⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ f ( n ) = ∫ 0 ∞ 1 + x n 1 d x ∫ 2 1 0 π f 2 ( n ) d n = A + B A
Submit your answer as A + B .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
How do you prove the first integral?
It should be
f ( n ) = ∫ 0 ∞ ∫ 0 ∞ e − t ( 1 + x n ) d t d x = ∫ 0 ∞ − 1 + x n e − t ( 1 + x n ) ∣ ∣ ∣ ∣ 0 ∞ d x = ∫ 0 ∞ 1 + x n 1 d x Not d x d t
I have a different, much lengthier approach :(
f ( n ) = ∫ 0 ∞ 1 + x n d x
Let t = 1 + x n 1
d t = 1 + x n 2 − n x n − 1 d x = − n t 2 x n − 1 d x
t = 1 + x n 1 , ∴ x n − 1 = ( t 1 − t ) n n − 1
∴ d t = − n t 2 ( t 1 − t ) n n − 1 d x
Rearranging,
d x = − n 1 t − 2 ( t 1 − t ) n 1 − n d t
Using this and changing the limits,
f ( n ) = ∫ 1 0 − n t t − 2 ( t 1 − t ) n 1 − n d t = ∫ 0 1 n t t − 2 t n 1 − n ( 1 − t ) n 1 − n d t
Algebra...
∴ f ( n ) = n 1 ∫ 0 1 t ( 1 − n 1 ) − 1 ( 1 − t ) n 1 − 1 = B ( 1 − n 1 , n 1 )
where B ( x , y ) is the beta function, with these properties:
B ( x , y ) = ∫ 0 1 t x − 1 ( 1 − t ) y − 1 d t
B ( x , y ) = Γ ( x + y ) Γ ( x ) Γ ( y )
The first one was used in the integral. Using the second one,
f ( n ) = n Γ ( 1 ) Γ ( n 1 ) Γ ( 1 − n 1 ) which using Euler's reflection formula and Γ ( n ) = ( n − 1 ) ! becomes
f ( n ) = n sin ( n π ) π = n π csc ( n π )
∫ 2 1 0 π f 2 ( n ) d n = ∫ 2 1 0 n 2 π csc ( n π ) d n
Let u = n π , d u = − n 2 π d n
∫ 2 1 0 π f 2 ( n ) d n = ∫ 2 π 1 0 π − csc 2 ( x ) d x = cot ( x ) ∣ ∣ ∣ ∣ 2 π 1 0 π = cot ( 1 0 π )
cot ( 1 0 π ) :
∴ ∫ 2 1 0 π f 2 ( n ) d n = 5 + 2 5
2 + 5 = 7
Problem Loading...
Note Loading...
Set Loading...
f ( n ) = ∫ 0 ∞ 1 + x n 1 d x = ∫ 0 ∞ ∫ 0 ∞ e − t ( 1 + x n ) d t d x
Sub u = x n t d u = n x n − 1 t d x
n 1 ∫ 0 ∞ e − t t n − 1 d t ∫ 0 ∞ u n 1 − 1 e − u d u =
n Γ ( 1 − n 1 ) Γ ( n 1 ) = n sin n π π by Euler’s Reflection Formula
∫ 2 1 0 f 2 ( n ) d n = ∫ 0 1 0 n 2 sin 2 n π π 2 d n =
− π 2 ∫ 2 1 1 0 1 csc 2 π x d x = π cot 1 0 π = π 5 + 2 5