Call it what you want

Calculus Level 5

{ f ( n ) = 0 1 1 + x n d x 2 10 f 2 ( n ) π d n = A + B A \large \begin{cases} f(n) = \displaystyle \int_{0}^{\infty}\frac{1}{1+x^n}dx \\ \displaystyle \int_{2}^{10}\frac{f^2(n)}{\pi}\ dn =\sqrt{A+B\sqrt{A}} \end{cases}

Submit your answer as A + B A+B .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

First Last
Nov 20, 2017

f ( n ) = 0 1 1 + x n d x = 0 0 e t ( 1 + x n ) d t d x \displaystyle f(n)=\int_0^\infty\frac{1}{1+x^n}dx=\int_{0}^{\infty}\int_{0}^{\infty}e^{-t(1+x^n)}dt\ dx

Sub u = x n t d u = n x n 1 t d x \displaystyle u = x^nt\quad du = nx^{n-1}t\,dx

1 n 0 e t t 1 n d t 0 u 1 n 1 e u d u = \displaystyle\frac{1}{n}\int_{0}^{\infty}e^{-t}t^{\frac{-1}{n}}dt\int_{0}^{\infty}u^{\frac{1}{n}-1}e^{-u}du =

Γ ( 1 1 n ) Γ ( 1 n ) n = π n sin π n by Euler’s Reflection Formula \displaystyle\frac{\Gamma(1-\frac{1}{n})\Gamma(\frac{1}{n})}{n} = \frac{\pi}{n\sin{\frac{\pi}{n}}}\quad \text{by Euler's Reflection Formula}

2 10 f 2 ( n ) d n = 0 10 π 2 n 2 sin 2 π n d n = \displaystyle\int_2^{10}f^2(n)dn=\int_0^{10}\frac{\pi^2}{n^2\sin^2{\frac{\pi}{n}}}dn=

π 2 1 2 1 10 csc 2 π x d x = π cot π 10 = π 5 + 2 5 \displaystyle -\pi^2\int_\frac{1}{2}^\frac{1}{10}\csc^2{\pi x}dx =\pi\cot{\frac{\pi}{10}}=\pi\sqrt{5+2\sqrt{5}}

How do you prove the first integral?

Digvijay Singh - 3 years, 6 months ago

Log in to reply

I've updated the answer.

First Last - 3 years, 6 months ago

It should be

f ( n ) = 0 0 e t ( 1 + x n ) d t d x Not d x d t = 0 e t ( 1 + x n ) 1 + x n 0 d x = 0 1 1 + x n d x \begin{aligned} f(n) & = \int_0^\infty \int_0^\infty e^{-t(1+x^n)}\color{#D61F06}dt \ dx & \small \color{#D61F06} \text{Not }dx \ dt \\ & = \int_0^\infty - \frac {e^{-t(1+x^n)}}{1+x^n} \bigg|_0^\infty \ dx \\ & = \int_0^\infty \frac 1{1+x^n} \ dx \end{aligned}

Chew-Seong Cheong - 3 years, 6 months ago

Log in to reply

Yes. Thanks I mistyped.

First Last - 3 years, 6 months ago
Kishan Jani
Apr 27, 2019

I have a different, much lengthier approach :(

f ( n ) = 0 d x 1 + x n f(n)=\int_{0}^{\infty} \frac{dx}{1+x^{n}}

Let t = 1 1 + x n t=\frac{1}{1+x^{n}}

d t = n x n 1 1 + x n 2 d x = n t 2 x n 1 d x dt=\frac{-nx^{n-1}}{{1+x^{n}}^2}dx=-nt^{2}x^{n-1}dx

t = 1 1 + x n t=\frac{1}{1+x^{n}} , x n 1 = ( 1 t t ) n 1 n \therefore x^{n-1}=(\frac{1-t}{t})^{\frac{n-1}{n}}

d t = n t 2 ( 1 t t ) n 1 n d x \therefore dt=-nt^{2}(\frac{1-t}{t})^{\frac{n-1}{n}}dx

Rearranging,

d x = 1 n t 2 ( 1 t t ) 1 n n d t dx=-\frac{1}{n}t^{-2}(\frac{1-t}{t})^{\frac{1-n}{n}}dt

Using this and changing the limits,

f ( n ) = 1 0 t n t 2 ( 1 t t ) 1 n n d t = 0 1 t n t 2 t 1 n n ( 1 t ) 1 n n d t f(n)=\int_{1}^{0}-\frac{t}{n}t^{-2}(\frac{1-t}{t})^{\frac{1-n}{n}}dt =\int_{0}^{1} \frac{t}{n}t^{-2} t^{\frac{1-n}{n}}({1-t})^{\frac{1-n}{n}}dt

Algebra...

f ( n ) = 1 n 0 1 t ( 1 1 n ) 1 ( 1 t ) 1 n 1 = B ( 1 1 n , 1 n ) \therefore f(n)=\frac{1}{n}\int_{0}^{1} t^{(1-\frac{1}{n})-1}(1-t)^{\frac{1}{n}-1}= B(1-\frac{1}{n},\frac{1}{n})

where B ( x , y ) B(x,y) is the beta function, with these properties:

B ( x , y ) = 0 1 t x 1 ( 1 t ) y 1 d t B(x,y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1}dt

B ( x , y ) = Γ ( x ) Γ ( y ) Γ ( x + y ) B(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}

The first one was used in the integral. Using the second one,

f ( n ) = Γ ( 1 n ) Γ ( 1 1 n ) n Γ ( 1 ) f(n)=\frac{\Gamma(\frac{1}{n})\Gamma(1-\frac{1}{n})}{n\Gamma(1)} which using Euler's reflection formula and Γ ( n ) = ( n 1 ) ! \Gamma(n)=(n-1)! becomes

f ( n ) = π n sin ( π n ) = π n csc ( π n ) f(n)=\frac{\pi}{n\sin(\frac{\pi}{n})} =\frac{\pi}{n}\csc(\frac{\pi}{n})

2 10 f 2 ( n ) π d n = 2 10 π n 2 csc ( π n ) d n \int_{2}^{10}\frac{f^{2}(n)}{\pi}dn=\int_{2}^{10} \frac{\pi}{n^{2}}\csc(\frac{\pi}{n})dn

Let u = π n u=\frac{\pi}{n} , d u = π n 2 d n du=-\frac{\pi}{n^{2}}dn

2 10 f 2 ( n ) π d n = π 2 π 10 csc 2 ( x ) d x = cot ( x ) π 2 π 10 = cot ( π 10 ) \int_{2}^{10}\frac{f^{2}(n)}{\pi}dn=\int_{\frac{\pi}{2}}^{\frac{\pi}{10}} -\csc^{2}(x)dx = \cot(x) \bigg\vert_{\frac{\pi}{2}}^{\frac{\pi}{10}} = \cot(\frac{\pi}{10})

cot ( π 10 ) \cot(\frac{\pi}{10}) :

  1. find cos ( π 10 ) \cos(\frac{\pi}{10}) by expanding and solving the fifth-degree polynomial from cos ( 5 θ ) = 0 \cos(5\theta)=0 when θ = π 10 \theta=\frac{\pi}{10} (there has to be a better way)
  2. use cos θ \cos\theta to get sin θ \sin\theta
  3. cot θ = cos θ sin θ \cot\theta=\frac{\cos\theta}{\sin\theta}
  4. cot ( π 10 ) = 5 + 2 5 \therefore \cot(\frac{\pi}{10}) = \sqrt{5+2\sqrt{5}}

2 10 f 2 ( n ) π d n = 5 + 2 5 \therefore \int_{2}^{10}\frac{f^{2}(n)}{\pi}dn=\sqrt{5+2\sqrt{5}}

2 + 5 = 7 2+5=7

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...