Calvin goes to the local "7-11" store!

Calvin goes into the local "7-11" store and buys four items. The bill totals $ 7.11 \$7.11 . He notices that the product of the four prices is also exactly 7.11 7.11 .

If the ascending order of the prices of the four items in dollars is A , B , C , D A, B, C, D , and then, if the value of D B + C A \dfrac{D}{B} + \dfrac{C}{A} can be expressed as M N \dfrac{M}{N} for positive coprime integers ( M , N ) (M,N) . Submit the value of M + N M+N as your answer.

Note : The four numbers ( A , B , C , D ) (A,B,C,D) have at most two places of decimals.


The answer is 2389.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

  • (1): Given 4 4 numbers. The sum of these numbers is 12 12 . What is the maximum value of these number's product? The solution is 3 × 3 × 3 × 3 = 81 3\times3\times3\times3=81 . When the numbers are approximately equals, then we will get the biggest product.

  • (2): Given 3 3 numbers. The product of these numbers is 24 24 . What is the minimum value of these number's sum? The solution is 2 + 3 + 4 2+3+4 . When the numbers are approximately equals, then we will get the smallest sum.


We can multiply each number by 100. Then: A × B × C × D = 711 , 000 , 00 A + B + C + D = 711 \begin{aligned} A\times B\times C\times D&=711,000,00\\ A+B+C+D&=711 \end{aligned}

711000000 = 2 6 × 3 2 × 5 6 × 79 711000000=2^6\times3^2\times5^6\times79 . Let's be A A multiples of 79 79 .


If A = 79 × 5 A=79\times5 , then B C D 711 79 × 5 3 105 B\approx C\approx D\approx\cfrac{711-79\times5}{3}\approx105 . Therfore the maximum vaslue of A × B × C × D A\times B\times C\times D is ( 79 × 5 ) × 105 × 105 × 106 = 461616750 < 711000000 (79\times 5)\times105\times105\times106=461616750<711000000 . Therefore A < 79 × 5 A<79\times5


Nove prove that: 5 B , C , D 5|B,C,D :

  • Assume that only one price is divisible by 5 5 : the sum will be bigger than 711 711
  • If only two prices are divisible by 5 5 ( B , C ) (B,C) :
    • If B B , is multiples of 5 4 5^4 or 5 5 5^5 , then with simple logic the sum will be bigger, than 711 711
    • If B , C B,C are multiples of 5 3 5^3 (using (1) and (2) ): A B C D sum 79 125 125 576 > 711 79 × 2 125 125 288 < 711 79 × 3 125 125 192 < 711 79 × 4 125 125 144 710 Note: the sum will be bigger, if we continue that. So there are no solutions 125 125 > 711 79 250 125 288 > 711 79 × 2 250 125 144 < 711 79 × 3 250 125 96 708 Same way, there are no solutions 250 125 > 711 79 375 125 192 > 711 79 × 2 375 125 86 > 711 375 125 > 711 B can’t be bigger. So we should see only B=250,C=250. In other cases there are no solutions(with simple logic) 79 250 250 144 > 711 250 250 > 711 \begin{array}{c|c|c|c|c|} A&B&C&D&\text{sum}\\ \hline 79&125&125&576&>711\\ 79\times2&125&125&288&<711\\ 79\times3&125&125&192<711\\ 79\times4&125&125&144&710&\text{Note: the sum will be bigger, if we continue that. So there are no solutions}\\ \vdots&125&125&\vdots&>711\\ \hline 79&250&125&288&>711\\ 79\times2&250&125&144&<711\\ 79\times3&250&125&96&708&\text{Same way, there are no solutions}\\ \vdots&250&125&\vdots&>711\\ \hline 79&375&125&192&>711\\ 79\times2&375&125&86&>711\\ \vdots&375&125&\vdots&>711&\text{B can't be bigger. So we should see only B=250,C=250.}\\ & & & & &\text{In other cases there are no solutions(with simple logic)} \\ \hline \hline 79&250&250&144&>711\\ \vdots&250&250&\vdots&>711 \end{array}

Therefore 5 B , C , D 5|B,C,D .


Now let's see the last digits:

  • A A : A last digit 79 × 1 9 79 × 2 8 79 × 3 7 79 × 4 6 \begin{array}{c|c} A&\text{last digit}\\ \hline 79\times1&9\\ 79\times2&8\\ 79\times3&7\\ 79\times4&6\\ \end{array}
  • B , C , D B,C,D : 0 0 or 5 5 , because they are divisible by 5.

Now, the last digit of 711 711 , so the last digit of A A should be equal to 6 6 , because 5 + 6 1 5+6\rightarrow1 . Therefore A = 79 × 4 = 316 A=79\times4=316 . Now there are two opportunities:

  • The last digits of B , C , D B,C,D are 5 , 5 , 5 5,5,5 - but then 2 ∤ B , C , D 2\not{|}B,C,D , so this is impossible
  • The last digits of B , C , D B,C,D are 0 , 0 , 5 0,0,5

Now let's see the second last digit(second digit from the end of the number):

Let's be [ ] [\cdot] the second digit from the end of the number.

The carry over from the last digits is 6 + 0 + 0 + 5 10 = 1 \left \lfloor \cfrac{6+0+0+5}{10} \right \rfloor=1 . [ A ] + [ B ] + [ C ] + [ D ] + 1 (carry over) ( m o d 10 ) = [ 711 ] = 1 [ B ] + [ C ] + [ D ] = 9 \begin{aligned} [A]+[B]+[C]+[D]+1\text{(carry over)}\pmod {10}=[711]&=1\\ [B]+[C]+[D]&=9 \end{aligned}

With some calculations [ B , C , D ] 2 , 5 , 7 [B,C,D]\in{2,5,7} .

7 7 is possible if 3 × 5 × 5 3\times5\times5 or 3 × 5 × 5 × 5 3\times5\times5\times5

With simple logic the only solution is: [ B ] = 5 [ C ] = 2 [ D ] = 2 \begin{aligned} [B]&=5\\ [C]&=2\\ [D]&=2 \end{aligned}

With a few trial and error and logic:

A = 316 B = 150 C = 125 D = 120 \begin{aligned} A&=316\\ B&=150\\ C&=125\\ D&=120 \end{aligned}

But the problem says this should be in ascending order, so the final solution is:

A = 1.20 B = 1.25 C = 1.50 D = 3.16 D B + C A = 3.16 1.25 + 1.5 1.2 = 1889 600 M + N = 2389 \begin{aligned} A&=1.20\\ B&=1.25\\ C&=1.50\\ D&=3.16 \end{aligned}\implies \cfrac{D}{B}+\cfrac{C}{A}=\cfrac{3.16}{1.25}+\cfrac{1.5}{1.2}=\cfrac{1889}{600}\implies M+N=2389

@Satyajit Mohanty Is this correct?

A Former Brilliant Member - 9 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...