Calvin says why be unequal if you can be equal?

Algebra Level 3

x + y x + y + z + y + z x + y + z + z + x x + y + z \large \sqrt{\dfrac{x+y}{x+y+z}}+ \sqrt{\dfrac{y+z}{x+y+z}}+ \sqrt{\dfrac{z+x}{x+y+z}}

Once, Calvin was learning inequalities and he came across the above expression where x , y , z x,y,z are positive real numbers. Calvin maximized it and obtained the maximum value of the expression above as M M . Calculate M M correct to 2 decimal places.


(Click here) for the whole set .


The answer is 2.45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Daniel Liu
Jun 21, 2015

Letting a = x + y x + y + z a=\dfrac{x+y}{x+y+z} , b = y + z x + y + z b=\dfrac{y+z}{x+y+z} , and c = z + x x + y + z c=\dfrac{z+x}{x+y+z} we see that a + b + c = 2 a+b+c=2 and we want to maximize a + b + c \sqrt{a}+\sqrt{b}+\sqrt{c}

But note that by Cauchy Schwarz, ( a + b + c ) 2 3 ( a + b + c ) = 6 (\sqrt{a}+\sqrt{b}+\sqrt{c})^2\le 3(a+b+c)=6 so a + b + c 6 2.45 \sqrt{a}+\sqrt{b}+\sqrt{c}\le \sqrt{6}\approx \boxed{2.45}

Generalization: a x + b y x + y + z + a y + b z x + y + z + a z + b x x + y + z 3 ( a + b ) \sqrt{\dfrac{ax+by}{x+y+z}}+\sqrt{\dfrac{ay+bz}{x+y+z}}+\sqrt{\dfrac{az+bx}{x+y+z}}\le \sqrt{3(a+b)}

Daniel Liu - 5 years, 11 months ago
Mohammed Imran
Apr 2, 2020

Here is my solution:

Let a = x + y x + y + z , b = y + z x + y + z , c = x + z x + y + z a=\frac{x+y}{x+y+z},b=\frac{y+z}{x+y+z},c=\frac{x+z}{x+y+z} . So, a + b + c = 2 a+b+c=2 and we want to maximize a + b + c \sqrt a+\sqrt b+\sqrt c . So, let f ( x ) = x f(x)=\sqrt x . Since f ( x ) f(x) is a concave function, by Jensen's Inequality, we have f ( a + b + c 3 ) f ( a ) + f ( b ) + f ( c ) 3 f(\frac{a+b+c}{3}) \leq \frac{f(a)+f(b)+f(c)}{3} this implies that f ( a ) + f ( b ) + f ( c ) 6 f(a)+f(b)+f(c) \leq \sqrt 6 , and thus, the maximum value is 6 = 2.45 \sqrt 6=\boxed{2.45}

Anirban Karan
Apr 22, 2017

Let, a = x + y x + y + z , b = y + z x + y + z a=\sqrt{\dfrac{x+y}{x+y+z}}, \,b=\sqrt{\dfrac{y+z}{x+y+z}} , and c = z + x x + y + z c=\sqrt{\dfrac{z+x}{x+y+z}}

a 2 + b 2 + c 2 = 2 1 2 [ ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ] = 2 a b b c c a [ subtracting ( a b + b c + c a ) from both sides ] But, ( a b ) 2 + ( b c ) 2 + ( c a ) 2 0 [for real a , b , c ] 2 a b b c c a 0 a b + b c + c a 2 Now, ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) ( a + b + c ) 2 ( 2 + 2 × 2 ) = 6 a + b + c 6 2.45 \begin{aligned}&\implies a^2+b^2+c^2=2\\ &\implies \frac{1}{2}[(a-b)^2+(b-c)^2+(c-a)^2]=2-ab-bc-ca \quad \color{#3D99F6}[\text{subtracting } (ab+bc+ca)\text{ from both sides}]\\ &\text{But, } (a-b)^2+(b-c)^2+(c-a)^2\geq 0 \quad \color{#3D99F6}\text{[for real } a,b,c]\\ &\implies 2-ab-bc-ca\geq 0\\ &\implies ab+bc+ca\leq 2\\ &\text{Now, }(a+b+c)^2=a^2+b^2+ c^2+2(ab+bc+ca)\\ &\implies (a+b+c)^2\leq(2+2\times 2)=6\\ &\implies \boxed{a+b+c \leq \sqrt{6}\approx 2.45}\end{aligned}

NB: This method also shows that ( a + b + c ) is maximum when ( a b ) 2 + ( b c ) 2 + ( c a ) 2 = 0 a = b = c x = y = z \color{#D61F06}\text{NB:} \color{#3D99F6} \text{ This method also shows that } (a+b+c) \text{ is maximum when } \\ \color{#20A900}(a-b)^2+(b-c)^2+(c-a)^2=0\implies a=b=c\implies x=y=z .

Aakash Khandelwal
Jun 21, 2015

let x+y+z = a then we need to maximize: (a-z/a)^0.5 +(a-x/a)^0.5 +(a-y/a)^0.5 = b by rms>+am we get 6^0.5>=b

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...