Can identity help us?

Algebra Level 3

A A and B B are two positive integers such that A > B , A 2 + B 2 = 19610 , A 3 B 3 = 117628 \small{A > B, \quad A^2+ B^2 = 19610, \quad A^3- B^3=117628 } Find the value A 2 ( B + 2 ) 2 \sqrt{A^2-(B+2)^2} .


Inspiration


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zico Quintina
May 11, 2018

Let x = A B \ x = A - B \ and y = A B \ y = AB \ . Then x 2 = ( A B ) 2 = A 2 2 A B + B 2 = A 2 2 y + B 2 \begin{aligned} x^2 &= (A - B)^2 \\ &= A^2 - 2AB + B^2 \\ & = A^2 - 2y + B^2 \end{aligned} and x 3 = ( A B ) 3 = A 3 3 A 2 B + 3 A B 2 B 3 = A 3 3 A B ( A B ) B 3 = A 3 3 x y B 3 \begin{aligned} x^3 &= (A - B)^3 \\ &= A^3 - 3A^2B + 3AB^2 - B^3 \\ &= A^3 - 3AB(A - B) - B^3 \\ &= A^3 - 3xy - B^3 \end{aligned} so that A 2 + B 2 = x 2 + 2 y \ A^2 + B^2 = x^2 + 2y \ and A 3 B 3 = x 3 + 3 x y \ A^3 - B^3 = x^3 + 3xy .

Then x 2 + 2 y = 19610 [Multiply by 3 x ] x 3 + 3 x y = 117628 [Multiply by - 2 ] \begin{aligned} x^2 + 2y &= 19610 \qquad &&\small \color{#3D99F6} \text{[Multiply by }3x] \\ x^3 + 3xy &= 117628 \qquad &&\small \color{#3D99F6} \text{[Multiply by -}2] \\ \\ \end{aligned} 3 x 3 + 6 x y = 58830 x - 2 x 3 6 x y = - 235256 x 3 = 58830 x 235256 \begin{aligned} 3x^3 + 6xy &= 58830x \\ \text{-}2x^3 - 6xy &= \text{-}235256 \\ \hline x^3 &= 58830x - 235256 \end{aligned}

To solve this cubic equation, we factor 235256 = 2 3 7 4201 \ 235256 = 2^3 \cdot 7 \cdot 4201 ; applying the integral zero theorem, we soon find that 4 \ 4\ is a root.

x 3 58830 x + 235256 = 0 ( x 4 ) ( x 2 + 4 x 58814 ) = 0 \begin{aligned} x^3 - 58830x + 235256 &= 0 \\ (x - 4)(x^2 + 4 x - 58814) &= 0 \end{aligned}

and checking the discriminant of the above quadratic reveals no other integral roots. So x = 4 \ x = 4 \ which gives us y = 9797 \ y = 9797 .

Now to reverse-engineer A \ A \ and B \ B :

( A + B ) 2 = A 2 + 2 A B + B 2 = A 2 + B 2 + 2 y = 19610 + 2 ( 9797 ) = 39204 A + B = 198 \begin{aligned} (A + B)^2 &= A^2 + 2AB + B^2 \\ &= A^2 + B^2 + 2y \\ &= 19610 + 2(9797) = 39204 \\ \\ A + B &= 198 \end{aligned}

Combining this with A B = x \ A - B = x :

A + B = 198 A B = 4 2 A = 202 \begin{aligned} A + B &= 198 \\ A - B &= 4 \\ \hline 2A &= 202 \end{aligned}

so A = 101 \ A = 101 \ and B = 97 \ B = 97 \ . Finally our answer is A 2 ( B + 2 ) 2 = 10 1 2 9 9 2 = ( 101 99 ) ( 101 + 99 ) = 2 200 = 400 = 20 \ \sqrt{A^2 - (B + 2)^2} = \sqrt{101^2 - 99^2} = \sqrt{(101 - 99)(101 + 99)} = \sqrt{2 \cdot 200} = \sqrt{400}=\boxed{20}

Very impressive and clear solution. :)

Naren Bhandari - 3 years, 1 month ago
Rab Gani
Aug 4, 2020

A^3 - B^3 = (A-B)(A^2 + AB + B^2), 117628 = 4. (19610 + AB) , 9797 = A.B. Find two numbers which difference is 4, and the product is 9797. Then we find A=101 and B=97. So the answer is 20

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...