Can it be prime? #4

For how many integers n n , is n 4 + 4 n^4 + 4 prime?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Kristian Vasilev
Dec 6, 2014

{ n }^{ 4 }+4={ n }^{ 4 }+4{ n }^{ 2 }+4-4{ n }^{ 2 }={ ({ n }^{ 2 } }+2)^{ 2 }-{ (2n) }^{ 2 }=({ n }^{ 2 }-2n+2)({ n }^{ 2 }+2n+2)=p(p\quad is\quad prime)\\ If\quad \quad { n }^{ 2 }-2n+2=1,{ n }^{ 2 }+2n+2=p,\gg \quad n=1\quad and\quad p=5\quad ,so\quad this\quad is\quad a\quad solution\\ If\quad { n }^{ 2 }-2n+2=p,\quad { n }^{ 2 }+2n+2=1\gg n=-1\quad and\quad p=5,so\quad this\quad is\quad a\quad solution\\ If\quad { n }^{ 2 }-2n+2=-1\quad ,{ n }^{ 2 }+2n+2=-p\gg n\quad is\quad not\quad real\\ If\quad { n }^{ 2 }-2n+2=-p,\quad { n }^{ 2 }+2n+2=-1\gg n\quad is\quad not\quad real\\ So\quad the\quad solutions\quad are\quad n=1\quad and\quad n=-1,\quad so\quad the\quad answer\quad is\quad \boxed { 2 } .

Aareyan Manzoor
Dec 20, 2014

n 4 + 4 = ( n 2 ) 2 + 2 2 = ( n 2 + 2 ) 2 2 ( 2 ) ( n 2 ) = ( n 2 + 2 ) 2 ( 2 n ) 2 n^4 +4 =(n^2)^2 +2^2 =(n^2 +2)^2 -2(2)(n^2)=(n^2 +2)^2 -(2n)^2 we know a 2 b 2 = ( a + b ) ( a b ) a^2 -b^2 =(a+b)(a-b) ( n 2 + 2 ) 2 ( 2 n ) 2 = ( n 2 2 n + 2 ) ( n 2 + 2 n + 2 ) (n^2 +2)^2 -(2n)^2= (n^2 -2n+2)(n^2 +2n+2) notice that if either one is 1 , 1 \ne 1,-1 than cant be a prime( only to integers) , so n 2 2 n + 2 = 1 , n = 2 ± 4 4 2 = 1 n^2 -2n +2 =1, n=\dfrac{2 \pm \sqrt{4-4}}{2} =1 now, n 2 + 2 n + 2 = 5 n^2 +2n+2=5 , if n = 1 n=1 , which is a prime, n 2 + 2 n + 2 = 1 , n = 2 ± 4 4 2 = 1 n^2 +2n+2=1, n= \dfrac{-2 \pm \sqrt{4-4}}{2}=-1 now n 2 2 n + 2 = 5 n^2 -2n+2=5 if n = 1 n=-1 , these are the only solutions since these are the only 2 with 1 × p r i m e 1 \times prime , n 2 2 n + 2 = 1 , n 2 + 2 n + 2 = 1 n^2 -2n+2=-1,n^2 +2n+2=-1 are complex, and therefore are rejected.

Consider x = ( 1 ) x=(-1) and y = ( p ) , p N p is a prime y=(-p), p\in N \land p\textrm{ is a prime} . Let Z = x y Z=xy .

Here, x , y 1 x,y\neq 1 but Z = x y Z=xy is prime. This contradicts the statement "notice that if either one is 1 \ne 1 than cant be a prime " you made in your solution.

You should include the other two cases where one of the factors is ( 1 ) (-1) and the other is ( p ) (-p) where p p is a prime and show that n n isn't real in those two cases to conclude your answer.

Prasun Biswas - 6 years, 5 months ago

Log in to reply

didnt notice that, i have edited the solution, thanks sir.

Aareyan Manzoor - 6 years, 5 months ago
Paola Ramírez
Dec 22, 2014

We can use Sophie-Germain identity n 4 + 4 r 4 n^4+4r^4 where r = 1 r=1 . The rest you know how solve it!

Abdullah Shahriar
Dec 21, 2014

n 1 , 3 , 5 , 7 , 9 ( m o d 10 ) n \equiv 1,3,5,7,9 \pmod{10}

C a s e 1 : Case 1:

n 3 , 7 , 9 ( m o d 10 ) n \equiv 3,7,9 \pmod{10}

n 4 + 4 > 5 n^4+4>5

n 4 1 ( m o d 10 ) n^4 \equiv 1 \pmod{10}

n 4 + 4 5 ( m o d 10 ) n^4+4 \equiv 5 \pmod{10}

n 4 + 4 0 ( m o d 5 ) n^4+4 \equiv 0 \pmod{5}

So,

n 1 ( m o d 10 ) n \equiv 1 \pmod{10}

n 4 + 4 5 ( m o d 10 ) n^4+4 \equiv 5 \pmod{10}

n 4 + 4 0 ( m o d 5 ) n^4+4 \equiv 0 \pmod{5}

The only prime which is divisble by 5 is 5 itself.

So n = 1 , 1 n= \boxed{1,-1}

I'm having a bit of trouble understanding the first line of your solution. Let's say n = 14 Z n=14\in \mathbb{Z} , Now, n 4 ( m o d 10 ) n\equiv 4 \pmod{10} . Doesn't this violate the first line of your solution?

Prasun Biswas - 6 years, 5 months ago

n 4 + 4 = ( n 2 ) 2 + 2 2 n 2 2 2 n 2 + 2 2 = ( n 2 + 2 ) 2 ( 2 n ) 2 = ( n 2 + 2 n + 2 ) ( n 2 2 n + 2 ) = ( ( n + 1 ) 2 + 1 ) ( ( n 1 ) 2 + 1 ) \begin{aligned} n^4+4& = (n^2)^2 +2 \cdot 2n^2 - 2 \cdot 2n^2 + 2^2\\ &= (n^2+2)^2-(2n)^2\\ & =(n^2+2n+2)(n^2-2n+2) \\ &=((n+1)^2+1)((n-1)^2+1)\\ \end{aligned}

( ( n + 1 ) 2 + 1 ) ((n+1)^2+1) and ( ( n 1 ) 2 + 1 ) ((n-1)^2+1) are both 1 \neq1 iff ( n ± 1 ) 2 0 (n \pm 1)^2 \neq 0

Then, n = { 1 , 1 } n= \{1,-1 \}

That give us n 4 + 4 = 5 n^4+4 =5

So, our solutions are n = 1 n=1 and n = 1 n=-1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...