Can linear equations be hard?

Algebra Level 5

Given that

f ( x ) = x 1 f\left( x \right) =\left| \left| x \right| -1 \right| P 0 ( x ) = f ( x ) { P }_{ 0 }(x)=f(x) P n + 1 ( x ) = f ( P n ( x ) ) { P }_{ n+1 }(x)={ f(P }_{ n }(x))

A k = lim n 0 k P n ( x ) 0.5 d x A_{k}=\left| \lim _{ n\rightarrow \infty }{ \int _{ 0 }^{ k }{ { P }_{ n }(x) } -0.5dx } \right|

A = max A k A=\max{A_{k}}

And that k 0 k_{0} is the minimum value such that A = A k 0 A=A_{k_{0}} , where k k ranges over all the positive reals k > 0 k>0 .

Find 1000 ( A + k 0 ) \left\lfloor 1000(A+k_{0}) \right\rfloor


Try my Other Problems


The answer is 625.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Julian Poon
Feb 18, 2015

Consider the sketch of f ( x ) f(x) . It would be the graph x 1 |x|-1 and then flipped upwards: hi hi

Now consider f ( f ( x ) ) f(f(x))

hi hi

So for lim n P n ( x ) 0.5 \lim _{ n\rightarrow \infty }{ { P }_{ n } } (x)-0.5 , the graph would be either

hi hi

or

hi hi

Depending on whether n n is odd or even.

It is now easy to see that the maximum of lim n 0 k P n ( x ) 0.5 d x \left| \lim _{ n\rightarrow \infty }{ \int _{ 0 }^{ k }{ { P }_{ n }(x) } -0.5dx } \right| is 0.5 2 / 2 = 0.125 = A {0.5}^{2}/2=0.125=A and this occurs in either graph when x = 0.5 = k 0 x=0.5=k_{0}

Therefore, 1000 ( A + k 0 ) = 625 \left\lfloor 1000(A+ k_{0} )\right\rfloor = \boxed{625}

So, I think you should define A k = lim 0 k A_k = | \lim \int_0^k \ldots | , and then A = min A k A = \min A_k , and k 0 k_0 is the minimum value such that A = A k 0 A = A_{k_0} .

That will clarify that the k k in the integral is fixed as n n tends to infinity, instead of being allowed to vary for different n n .

Calvin Lin Staff - 6 years, 3 months ago

Log in to reply

Or did you mean A = max A k A=\max{A_{k}} ? I edited it already btw, thanks!

Julian Poon - 6 years, 3 months ago
Akul Agrawal
Oct 27, 2015

Just to elaborate a little

Let's take 2 Cases.

Case(1)

A k = k 2 + { k } 2 2 k 2 A k = { k } 2 { k } 2 { A }_{ k }=\left| \frac { \left\lfloor k \right\rfloor }{ 2 } +\frac { { \left\{ k \right\} }^{ 2 } }{ 2 } -\frac { k }{ 2 } \right| \\ \Rightarrow \quad { A }_{ k }=\left| \frac { { \left\{ k \right\} }^{ 2 }-\left\{ k \right\} }{ 2 } \right|

Case(2)

A k = k 2 + { k } ( 2 { k } ) 2 k 2 A k = { k } { k } 2 2 { A }_{ k }=\left| \frac { \left\lfloor k \right\rfloor }{ 2 } +\frac { \left\{ k \right\} \left( 2-\left\{ k \right\} \right) }{ 2 } -\frac { k }{ 2 } \right| \\ \Rightarrow \quad { A }_{ k }=\left| \frac { \left\{ k \right\} -{ \left\{ k \right\} }^{ 2 } }{ 2 } \right|

Note

The equations would remain same if k is odd or even.

Conclusion

A = { k } 2 { k } 2 m i n = 1 8 a t { k } = 1 2 k m i n p o s = k o = 1 2 A={ \left| \frac { { \left\{ k \right\} }^{ 2 }-\left\{ k \right\} }{ 2 } \right| }_{ min }=\frac { 1 }{ 8 } \\ at\quad \left\{ k \right\} =\frac { 1 }{ 2 } \quad \Rightarrow { k }_{ min\quad pos }={ k }_{ o }=\frac { 1 }{ 2 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...