Can the angle take on any value - 2

Geometry Level 3

An isosceles trapezium has a perimeter of 80 80 , and an area of 250 250 . Let θ \theta be the angle between any two adjacent sides. If the minimum of sin θ \sin\theta can be expressed as a b , \dfrac ab, where a a and b b are coprime positive integers, submit your answer as a + b . a+b.

Bonus: Do it for general isosceles trapezium!

Inspiration


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

David Vreken
Apr 18, 2021

An isosceles trapezoid can be transformed into a parallelogram while keeping the same area and perimeter:

This problem is now the same as the inspiration problem , where it was found that sin θ 16 A P 2 = 16 250 8 0 2 = 5 8 \sin \theta \geq \cfrac{16A}{P^2} = \cfrac{16 \cdot 250}{80^2} = \cfrac{5}{8} .

Therefore, a = 5 a = 5 , b = 8 b = 8 , and a + b = 13 a + b = \boxed{13} .

Charley Shi
Apr 14, 2021

Label the two parallel sides as a a and b b respectively; also label the height as h h . The hypotenuse of the right angled triangle is d = h sin ( θ ) d = \frac{h}{\sin(\theta)} . The area of a trapezium is given by A = a + b 2 h A = \frac{a+b}{2}h , while the perimeter for the isosceles trapezium is P = 2 d + a + b P = 2d+a+b .

Using the area equation, we find that a + b = 2 A h a + b = \frac{2A}{h} . Substituting this into the perimeter equation along with the expression for d d yields 2 h sin ( θ ) + 2 A h = P \frac{2h}{\sin(\theta)} + \frac{2A}{h} = P h sin ( θ ) = P 2 A h = P h 2 A 2 h \frac{h}{\sin(\theta)} = \frac{P}{2} - \frac{A}{h} = \frac{Ph - 2A}{2h} sin ( θ ) = f ( h ) = 2 h 2 P h 2 A \sin(\theta) = f(h) = \frac{2h^2}{Ph-2A} Differentiate using the quotient rule: f ( h ) = 4 h ( P h 2 A ) 2 P h 2 ( P h 2 A ) 2 = 2 P h 2 8 A h ( P h 2 A ) 2 f'(h) = \frac{4h(Ph-2A) - 2Ph^2}{(Ph-2A)^2} = \frac{2Ph^2 -8Ah}{(Ph-2A)^2} Set the numerator to zero to find when f ( h ) = 0 f'(h) = 0 . 2 P h 2 8 A h = 2 h ( P h 4 A ) = 0 h = 0 , 4 A P 2Ph^2 - 8Ah = 2h(Ph - 4A) = 0 \longrightarrow h = 0, \frac{4A}{P} Since h = 0 h = 0 results in A = 0 A=0 , this is not a valid solution so h = 4 A P h = \frac{4A}{P} must be correct. Thus, the minimum of sin ( θ ) \sin(\theta) is: f ( 4 A P ) = 2 ( 4 A P ) 2 P ( 4 A P ) 2 A = 32 A 2 P 2 2 A = 16 A P 2 f\left( \frac{4A}{P}\right) = \frac{2\left( \frac{4A}{P}\right)^2}{P\left( \frac{4A}{P}\right) - 2A} = \frac{\frac{32A^2}{P^2}}{2A} = \boxed{\frac{16A}{P^2}} Substituting in P = 80 P = 80 and A = 250 A = 250 gives the final answer. 16 × 250 8 0 2 = 16 × 250 16 × 5 × 80 = 50 80 = 5 8 \frac{16\times250}{80^2} = \frac{16\times250}{16\times5\times80} = \frac{50}{80} = \frac{5}{8} Therefore, a + b = 5 + 8 = 13 a+ b = 5 + 8 = \boxed{13} .

Matthew Feig
Apr 19, 2021

Any isosceles trapezoid can be associated with a parallelogram with the same perimeter, area, and angles. Just reflect half of the trapezoid across the midsegment that is parallel to the two bases. And the relationship works in reverse. So the answer to this problem is the same as the minimum value of sin θ \sin \theta in a parallelogram that meets the same criteria. That was the question addressed in the Inspiration problem , with general solution sin θ 16 A P 2 \boxed{ \sin \theta \geq \dfrac{16A}{P^2} } .

For the values given here, we get sin θ 16 ( 250 ) 8 0 2 = 5 8 \sin \theta \geq \dfrac{16(250)}{80^2} = \dfrac{5}{8} . So a + b = 5 + 8 = 13 a + b = 5 + 8 = \boxed{13} .

Denote by P P the perimeter of trapezium A B C D ABCD , by A A its area and by θ \theta the acute angle A D C \angle ADC . Let x = A D = B C x=AD=BC and y = A B y=AB , the smaller of the two parallel sides of A B C D ABCD . Let E E , F F be points on C D CD such that A E D C B F AE\bot DC\bot BF . Then, we have the relations

P = A D + B C + A B + D E = 2 x + 2 y + 2 x cos θ 2 y = P 2 x 2 x cos θ ( 1 ) \begin{aligned} P & =AD+BC+AB+DE \\ & =2x+2y+2x\cos \theta \\ & \Rightarrow 2y=P-2x-2x\cos \theta \ \ \ \ \ (1) \\ \end{aligned}

A = 1 2 ( A B + C D ) A E 2 A = ( 2 y + 2 x cos θ ) x sin θ ( 1 ) 2 A = ( P 2 x 2 x cos θ + 2 x cos θ ) x sin θ ( 2 sin θ ) x 2 ( P sin θ ) x + 2 A = 0 \begin{aligned} & A=\dfrac{1}{2}\left( AB+CD \right)AE\Rightarrow 2A=\left( 2y+2x\cos \theta \right)x\sin \theta \\ & \overset{\left( 1 \right)}{\mathop{\Rightarrow }}\,2A=\left( P-2x-\cancel{2x\cos \theta }+\cancel{2x\cos \theta } \right)x\sin \theta \\ & \Rightarrow \left( 2\sin \theta \right){{x}^{2}}-\left( P\sin \theta \right)x+2A=0 \\ \end{aligned}

The latter is a quadratic equation which must have a solution for x x , thus its discriminant must be non-negative, i.e.

Δ 0 P 2 sin 2 θ 16 A sin θ 0 sin θ ( P 2 sin θ 16 A ) 0 0 < θ < 90 P 2 sin θ 16 A 0 sin θ 16 A P 2 \begin{aligned} & \Delta \ge 0\Leftrightarrow {{P}^{2}}{{\sin }^{2}}\theta -16A\sin \theta \ge 0 \\ & \Leftrightarrow \sin \theta \left( {{P}^{2}}\sin \theta -16A \right)\ge 0 \\ & \overset{0{}^\circ <\theta <90{}^\circ }{\mathop{\Leftrightarrow }}\,{{P}^{2}}\sin \theta -16A\ge 0 \\ & \Leftrightarrow \sin \theta \ge \dfrac{16A}{{{P}^{2}}} \\ \end{aligned}

Hence, the minimum value for sin θ \sin \theta is ( sin θ ) min = 16 A P 2 {{\left( \sin \theta \right)}_{\min }}=\dfrac{16A}{{{P}^{2}}} Substituting the specific values A = 250 A=250 and P = 80 P=80 , we get ( sin θ ) min = 16 × 250 80 2 = 5 8 {{\left( \sin \theta \right)}_{\min }}=\dfrac{16\times 250}{{{80}^{2}}}=\dfrac{5}{8} .

Consequently, we find A D = B C = x = 20 AD=BC=x=20 , A B = y = 20 5 39 2 12.2 AB=y=20-\dfrac{5\sqrt{39}}{2}\approx 12.2 and D C 27.8 DC\approx 27.8 .

For the answer, a = 5 a=5 , b = 8 b=8 , thus, a + b = 13 a+b=\boxed{13} .

Rocco Dalto
Jun 10, 2021

Area A = 1 2 ( B + b ) s sin ( θ ) = 250 sin ( θ ) = 500 ( B + b ) s A = \dfrac{1}{2}(B + b)s\sin(\theta) = 250 \implies \sin(\theta) = \dfrac{500}{(B + b)s}

and

Perimeter P = B + b + 2 s = 80 B + b = 80 2 s sin ( θ ) = 250 ( 40 s ) s θ = arcsin ( 250 40 s s 2 ) P = B + b + 2s = 80 \implies B + b = 80 - 2s \implies \sin(\theta) = \dfrac{250}{(40 - s)s} \implies \theta = \arcsin(\dfrac{250}{40s - s^2})

d θ d s = 500 ( s 20 ) s ( 40 s ) ( s 2 40 s 250 ) ( s 2 40 s + 250 ) = 0 \implies \dfrac{d\theta}{ds} = \dfrac{500(s - 20)}{s(40 - s)\sqrt{(s^2 - 40s - 250)(s^2 - 40s + 250)}} = 0

s = 20 \implies s = 20 and 5 ( 4 6 ) < s < 20 d θ d s < 0 5(4 - \sqrt{6}) < s < 20 \implies \dfrac{d\theta}{ds} < 0 and 20 < s < 5 ( 4 + 6 ) d θ d s > 0 20 < s < 5(4+ \sqrt{6}) \implies \dfrac{d\theta}{ds} > 0

\implies a min occurs at s = 20 sin ( θ ) = 250 400 = 5 8 = a b a + b = 13 . s = 20 \implies \sin(\theta) = \dfrac{250}{400} = \dfrac{5}{8} = \dfrac{a}{b} \implies a + b = \boxed{13}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...