Can the angle take on any value?

Geometry Level 3

A parallelogram has a perimeter of 80 80 , and an area of 250 250 . Let θ \theta be the angle between two adjacent sides. Find the minimum of sin θ \sin \theta .

0 0.625 0.333 0.5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Matthew Feig
Apr 16, 2021

Let's do the general case of a parallelogram with perimeter P P and area A A .

Label the side lengths a = P 4 + t a = \frac{P}{4} + t and b = P 4 t b = \frac{P}{4} - t . The parallelogram has the correct perimeter for all values of t t , and the natural range for t t is P 4 t P 4 -\frac{P}{4} \leq t \leq \frac{P}{4} .

The area of the parallelogram depends on t t and the angle θ \theta between two adjacent sides. A = a b sin θ = ( P 4 + t ) ( P 4 t ) sin θ = 1 16 ( P 2 16 t 2 ) sin θ \begin{aligned} A &= ab \sin \theta \\ &= \left(\frac{P}{4} + t \right) \left( \frac{P}{4} - t \right) \sin \theta \\ &= \frac{1}{16} \left( P^2 - 16t^2 \right) \sin \theta \end{aligned} Solving for the angle, we get sin θ = 16 A P 2 16 t 2 \sin \theta = \dfrac{16A}{P^2 - 16t^2} . This has a minimum when the denominator is a maximum. That occurs when t = 0 t = 0 , meaning we have a rhombus with a = b = P 4 a = b = \frac{P}{4} . sin θ 16 A P 2 \boxed{ \sin \theta \geq \frac{16A}{P^2} } .

Plugging in the values given, we get sin θ 16 ( 250 ) 8 0 2 = 5 8 \sin \theta \geq \dfrac{16(250)}{80^2} = \boxed{ \frac{5}{8} } . This corresponds to angles greater than sin 1 ( 5 8 ) = 38. 7 \sin^{-1} \left( \frac{5}{8} \right) = 38.7^\circ and less than 18 0 38. 7 = 141. 3 180^\circ - 38.7^\circ = 141.3^\circ .

Charley Shi
Apr 13, 2021

Let b b be the total length of the base, h h the height, and d = h sin ( θ ) d = \frac{h}{\sin(\theta)} the length of the hypotenuse of the right triangle. From the problem statement, we can see that b h = 250 bh = 250 and 2 ( b + d ) = 80 2(b+d) = 80 . Using these equations, we can find an equation for sin ( θ ) \sin(\theta) in terms of h h . b + d = 250 h + h sin ( θ ) = 40 b+d = \frac{250}{h} + \frac{h}{\sin(\theta)} = 40 250 + h 2 sin ( θ ) = 40 h 250 + \frac{h^2}{\sin(\theta)} = 40h h 2 sin ( θ ) = 40 h 250 \frac{h^2}{\sin(\theta)} = 40h -250 sin ( θ ) = f ( h ) = h 2 40 h 250 \sin(\theta) = f(h) = \frac{h^2}{40h-250} Differentiate using the quotient rule and set to zero to find the minimum. f ( h ) = 2 h ( 40 h 250 ) 40 h 2 ( 40 h 250 ) 2 = 40 h 2 500 h ( 40 h 250 ) 2 f'(h) = \frac{2h(40h-250) - 40h^2}{(40h-250)^2} = \frac{40h^2 -500h}{(40h-250)^2} Set the numerator to zero since the denominator can't be zero. 40 h 2 500 h = 20 h ( 2 h 25 ) = 0 h = 0 , 25 2 40h^2 - 500h = 20h(2h-25) = 0 \longrightarrow h = 0, \frac{25}{2} Clearly, h 0 h\neq 0 or else the area would be 0, so h = 25 2 h = \frac{25}{2} . Thus, the minimum of sin ( θ ) \sin(\theta) is f ( 25 2 ) = ( 25 2 ) 2 40 ( 25 2 ) 250 = 625 4 250 = 625 1000 = 0.625 f\left(\frac{25}{2}\right) = \frac{\left(\frac{25}{2}\right)^2}{40\left(\frac{25}{2}\right) - 250} = \frac{\frac{625}{4}}{250} = \frac{625}{1000} = \boxed{0.625}

Zakir Husain
Apr 13, 2021

l e t t h e s i d e s b e x , y let\space the\space sides\space be\space x,y x + y + x + y = 80 \Rightarrow x+y+x+y=80 x + y = 40.......... [ 1 ] \Rightarrow x+y=40..........[1] A r e a = x y sin θ = 250 \Rightarrow Area = xy\sin\theta=250 sin θ = 250 x y . . . . . . . . . . [ 2 ] \Rightarrow \sin\theta=\dfrac{250}{xy}..........[2] S q u a r i n g [ 1 ] Squaring \space [1] x 2 + y 2 + 2 x y = 1600 \Rightarrow x^2+y^2+2xy=1600 x y = 1600 ( x 2 + y 2 ) 2 \Rightarrow xy=\dfrac{1600-(x^2+y^2)}{2} P u t t i n g t h i s i n [ 2 ] Putting\space this\space in\space [2] sin θ = 500 1600 ( x 2 + y 2 ) \sin\theta=\dfrac{500}{1600-(\red{x^2+y^2})} sin θ w i l l b e m i n i m u m w h e n 1600 ( x 2 + y 2 ) w i l l b e m a x i m u m \Rightarrow\sin\theta\space will\space be \space minimum\space when\space 1600-(\red{x^2+y^2})\space will \space be\space maximum sin θ w i l l b e m i n i m u m w h e n x 2 + y 2 w i l l b e m i n i m u m \Rightarrow\sin\theta\space will\space be \space minimum\space when\space \red{x^2+y^2}\space will \space be\space minimum x 2 + y 2 = x 2 + ( 40 x ) 2 x + y = 40 f r o m [ 1 ] \red{x^2+y^2}=x^2+(40-x)^2\space\space\space\blue{\because x+y=40 \space from\space [1]} = 2 x 2 80 x + 1600 =2x^2-80x+1600 T a k i n g t h e f i r s t d e r i v a t i v e t e s t w e g e t Taking\space the\space first\space derivative\space test\space we\space get x = 20 x=20 sin θ = 5 00 16 00 ( 4 00 + 4 00 ) \Rightarrow\sin\theta=\dfrac{5\cancel{00}}{16\cancel{00}-(4\cancel{00}+4\cancel{00})} = 5 8 = 0.625 =\dfrac{5}{8}=\boxed{0.625}

Tom Engelsman
Apr 13, 2021

Let x x and y y be lengths of this parallelogram such that:

AREA: 2 1 2 x y sin θ = 250 sin θ = 250 x y 2 \cdot \frac{1}{2}xy \cdot \sin \theta = 250 \Rightarrow \sin \theta = \frac{250}{xy} (i)

PERIMETER: 2 x + 2 y = 80 2x + 2y = 80 (ii)

If y = 40 x y = 40 -x from (ii), then substitution into (i) gives us sin θ = f ( x ) = 250 x ( 40 x ) = 250 40 x x 2 \sin \theta = f(x) = \frac{250}{x(40-x)} = \frac{250}{40x-x^2} (iii). Taking f ( x ) = 0 f'(x) = 0 yields:

f ( x ) = 250 ( 40 2 x ) ( 40 x x 2 ) 2 = 0 x = 20 f'(x) = -\frac{250(40-2x)}{(40x-x^2)^2} = 0 \Rightarrow x = 20

and the second derivative at x = 20 x = 20 gives:

f ( x ) = 250 [ 2 ( 40 2 x ) 2 ( 40 x x 2 ) 3 + 2 ( 40 x x 2 ) 2 ] f ( 20 ) = 1 320 > 0 f''(x) = 250[\frac{2(40-2x)^2}{(40x-x^2)^3} + \frac{2}{(40x-x^2)^2}] \Rightarrow f''(20) = \frac{1}{320} > 0 (which is a global minimum).

Hence, f M I N = f ( 20 ) = 250 40 ( 20 ) 2 0 2 = 250 400 = 5 8 . f_{MIN} = f(20) = \frac{250}{40(20)- 20^2} = \frac{250}{400} = \boxed{\frac{5}{8}}.

Shinnosuke Ikuta
Apr 26, 2021

平行四辺形の二組の辺をt,s 面積をSと置く。 2t+2s=80 tssinθ=250 の二つの式を連立するとsinθについてtまたはsで表現できる。 sinθ<1にそれを代入して平方完成すると、s=20でf(s)が最小の値をとる。 sで表されたsinθの式にs=20を代入して、答えは0.625

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...