A parallelogram has a perimeter of 8 0 , and an area of 2 5 0 . Let θ be the angle between two adjacent sides. Find the minimum of sin θ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let
b
be the total length of the base,
h
the height, and
d
=
sin
(
θ
)
h
the length of the hypotenuse of the right triangle. From the problem statement, we can see that
b
h
=
2
5
0
and
2
(
b
+
d
)
=
8
0
. Using these equations, we can find an equation for
sin
(
θ
)
in terms of
h
.
b
+
d
=
h
2
5
0
+
sin
(
θ
)
h
=
4
0
2
5
0
+
sin
(
θ
)
h
2
=
4
0
h
sin
(
θ
)
h
2
=
4
0
h
−
2
5
0
sin
(
θ
)
=
f
(
h
)
=
4
0
h
−
2
5
0
h
2
Differentiate using the quotient rule and set to zero to find the minimum.
f
′
(
h
)
=
(
4
0
h
−
2
5
0
)
2
2
h
(
4
0
h
−
2
5
0
)
−
4
0
h
2
=
(
4
0
h
−
2
5
0
)
2
4
0
h
2
−
5
0
0
h
Set the numerator to zero since the denominator can't be zero.
4
0
h
2
−
5
0
0
h
=
2
0
h
(
2
h
−
2
5
)
=
0
⟶
h
=
0
,
2
2
5
Clearly,
h
=
0
or else the area would be 0, so
h
=
2
2
5
. Thus, the minimum of
sin
(
θ
)
is
f
(
2
2
5
)
=
4
0
(
2
2
5
)
−
2
5
0
(
2
2
5
)
2
=
2
5
0
4
6
2
5
=
1
0
0
0
6
2
5
=
0
.
6
2
5
l e t t h e s i d e s b e x , y ⇒ x + y + x + y = 8 0 ⇒ x + y = 4 0 . . . . . . . . . . [ 1 ] ⇒ A r e a = x y sin θ = 2 5 0 ⇒ sin θ = x y 2 5 0 . . . . . . . . . . [ 2 ] S q u a r i n g [ 1 ] ⇒ x 2 + y 2 + 2 x y = 1 6 0 0 ⇒ x y = 2 1 6 0 0 − ( x 2 + y 2 ) P u t t i n g t h i s i n [ 2 ] sin θ = 1 6 0 0 − ( x 2 + y 2 ) 5 0 0 ⇒ sin θ w i l l b e m i n i m u m w h e n 1 6 0 0 − ( x 2 + y 2 ) w i l l b e m a x i m u m ⇒ sin θ w i l l b e m i n i m u m w h e n x 2 + y 2 w i l l b e m i n i m u m x 2 + y 2 = x 2 + ( 4 0 − x ) 2 ∵ x + y = 4 0 f r o m [ 1 ] = 2 x 2 − 8 0 x + 1 6 0 0 T a k i n g t h e f i r s t d e r i v a t i v e t e s t w e g e t x = 2 0 ⇒ sin θ = 1 6 0 0 − ( 4 0 0 + 4 0 0 ) 5 0 0 = 8 5 = 0 . 6 2 5
Let x and y be lengths of this parallelogram such that:
AREA: 2 ⋅ 2 1 x y ⋅ sin θ = 2 5 0 ⇒ sin θ = x y 2 5 0 (i)
PERIMETER: 2 x + 2 y = 8 0 (ii)
If y = 4 0 − x from (ii), then substitution into (i) gives us sin θ = f ( x ) = x ( 4 0 − x ) 2 5 0 = 4 0 x − x 2 2 5 0 (iii). Taking f ′ ( x ) = 0 yields:
f ′ ( x ) = − ( 4 0 x − x 2 ) 2 2 5 0 ( 4 0 − 2 x ) = 0 ⇒ x = 2 0
and the second derivative at x = 2 0 gives:
f ′ ′ ( x ) = 2 5 0 [ ( 4 0 x − x 2 ) 3 2 ( 4 0 − 2 x ) 2 + ( 4 0 x − x 2 ) 2 2 ] ⇒ f ′ ′ ( 2 0 ) = 3 2 0 1 > 0 (which is a global minimum).
Hence, f M I N = f ( 2 0 ) = 4 0 ( 2 0 ) − 2 0 2 2 5 0 = 4 0 0 2 5 0 = 8 5 .
平行四辺形の二組の辺をt,s 面積をSと置く。 2t+2s=80 tssinθ=250 の二つの式を連立するとsinθについてtまたはsで表現できる。 sinθ<1にそれを代入して平方完成すると、s=20でf(s)が最小の値をとる。 sで表されたsinθの式にs=20を代入して、答えは0.625
Problem Loading...
Note Loading...
Set Loading...
Let's do the general case of a parallelogram with perimeter P and area A .
Label the side lengths a = 4 P + t and b = 4 P − t . The parallelogram has the correct perimeter for all values of t , and the natural range for t is − 4 P ≤ t ≤ 4 P .
The area of the parallelogram depends on t and the angle θ between two adjacent sides. A = a b sin θ = ( 4 P + t ) ( 4 P − t ) sin θ = 1 6 1 ( P 2 − 1 6 t 2 ) sin θ Solving for the angle, we get sin θ = P 2 − 1 6 t 2 1 6 A . This has a minimum when the denominator is a maximum. That occurs when t = 0 , meaning we have a rhombus with a = b = 4 P . sin θ ≥ P 2 1 6 A .
Plugging in the values given, we get sin θ ≥ 8 0 2 1 6 ( 2 5 0 ) = 8 5 . This corresponds to angles greater than sin − 1 ( 8 5 ) = 3 8 . 7 ∘ and less than 1 8 0 ∘ − 3 8 . 7 ∘ = 1 4 1 . 3 ∘ .