Can this be really solved?

Algebra Level 5

x 5 7 x 4 1 = 0 \large {{ x }^{ 5 }-7{ x }^{ 4 }-1=0}

If r 1 , r 2 , r 3 , r 4 , r 5 r_{1}, r_{2}, r_{3}, r_{4}, r_{5} are the roots of the equation above, find the value of expression below.

1 r 1 20 + 1 r 2 20 + 1 r 3 20 + 1 r 4 20 + 1 r 5 20 \large{\frac { 1 }{ { r }_{ 1 }^{ 20 } } +\frac { 1 }{ { r }_{ 2 }^{ 20 } } +\frac { 1 }{ { r }_{ 3 }^{ 20 } } +\frac { 1 }{ { r }_{ 4 }^{ 20 } } +\frac { 1 }{ { r }_{ 5 }^{ 20 } } }


The answer is -67233.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aareyan Manzoor
Oct 12, 2015

x 5 7 x 4 1 = 0 x^5-7x^4-1=0 we get that ( x ) = 7 \sum (x)=7 for roots 1 r i \frac{1}{r_i} , the equation becomes y = 1 x y = \frac{1}{x} 1 y 5 7 1 y 4 1 = 0 \frac{1}{y^5}-7\frac{1}{y^4}-1=0 y 5 + 7 y 1 = 0 y^5+7y-1=0 since s 1 = s 2 = s 3 = 0 s_1=s_2=s_3=0 , p 1 = p 2 = p 3 = 0 p_1=p_2=p_3=0 where s n s_n is nth symmetric sum and p n p_n is nth power sum. so y 5 = 7 y + 1 ( 1 ) y^5=-7y+1--(1) y 20 = 2401 y 4 + i r r e l e v e n t + 1 y^{20}=2401y^4+irrelevent+1 irrelevent because sum of all y , y 2 , y 3 y,y^2,y^3 is 0: y 20 = 2401 ( y 4 ) + 5 \sum y^{20} = 2401\sum(y^4) + 5 ( 1 ) y 4 = 7 + 1 y = 7 + x (1)--y^4=-7+\frac{1}{y}=-7+x y 4 = 35 + x = 35 + 7 = 28 \sum y^4=-35+\sum x = -35+7=-28 y 20 = 2401 28 + 5 = 67223 \sum y^{20} = 2401*-28 + 5=\boxed{ -67223}

Oh that's too easy liked it and upvoted!

Department 8 - 5 years, 8 months ago

Very nice.

But i solved it using a lot of calculations by using newton sum.

Dev Sharma - 5 years, 7 months ago
Tanishq Varshney
Oct 10, 2015

Nice problem!!

We can rewrite the equation as

x 4 = 1 x 7 \large{x^4=\frac{1}{x-7}}

x r i x\to r_{i} where i = 1 , 2 , 3 , 4 , 5 i=1,2,3,4,5

r i 7 = 1 r i 4 \large{r_{i}-7=\frac{1}{r_{i}^{4}}}

raising the power to five

1 r i 20 = ( r i 7 ) 5 \large{\frac{1}{r_{i}^{20}}=(r_{i}-7)^5}

the required expression is i = 1 5 1 r i 20 = i = 1 5 ( r i 7 ) 5 \large{\displaystyle \sum^{5}_{i=1} \frac{1}{r_{i}^{20}}=\displaystyle \sum^{5}_{i=1} (r_{i}-7)^5}

Expanding the expression, we get

i = 1 5 ( r i 5 7 ( 5 1 ) r i 4 + 7 2 ( 5 2 ) r i 3 7 3 ( 5 3 ) r i 2 + 7 4 ( 5 4 ) r i 7 5 ( 5 5 ) ) \large{\displaystyle \sum^{5}_{i=1} \left( r_{i}^{5}- 7 \binom{5}{1}r_{i}^{4}+7^{2}\binom{5}{2} r_{i}^{3}-7^{3} \binom{5}{3} r_{i}^{2}+7^{4} \binom{5}{4}r_{i}-7^{5}\binom{5}{5}\right) }

now applying newtons identities, which states

P ( x ) = a k x k + a k 1 x k 1 + . . . . . a 1 x + a 0 e 1 = α i = a k 1 a k e 2 = α i α j = a k 2 a k e k = α i = ( 1 ) k a 0 a k P i = j = 1 k α j i F o r i k 1 P k 1 = e 1 P k 2 e 2 P k 3 + . . . . + ( 1 ) k 2 e k 1 ( k 1 ) F o r i k P i = j = 1 k ( 1 ) j + 1 e j P i j \large{P(x)={ a }_{ k }{ x }^{ k }+{ a }_{ k-1 }{ x }^{ k-1 }+.....{ a }_{ 1 }x+{ a }_{ 0 }\\ { e }_{ 1 }=\sum { { \alpha }_{ i } } =-\frac { { a }_{ k-1 } }{ { a }_{ k } } \\ { e }_{ 2 }=\displaystyle \sum { { \alpha }_{ i }{ \alpha }_{ j } } =\frac { { a }_{ k-2 } }{ { a }_{ k } } \\ { e }_{ k }=\prod { { \alpha }_{ i } } ={ \left( -1 \right) }^{ k }\frac { { a }_{ 0 } }{ { a }_{ k } } \\ { P }_{ i }=\displaystyle \sum _{ j=1 }^{ k }{ { \alpha }_{ j }^{ i } } \\ For\quad i\le k-1\\ { P }_{ k-1 }={ e }_{ 1 }{ P }_{ k-2 }-{ e }_{ 2 }{ P }_{ k-3 }+....+{ \left( -1 \right) }^{ k-2 }{ e }_{ k-1 }\left( k-1 \right) \\ For\quad i\ge k\\ { P }_{ i }=\displaystyle \sum _{ j=1 }^{ k }{ { \left( -1 \right) }^{ j+1 }{ e }_{ j }{ P }_{ i-j } } }

Now

( e 1 = 7 P 0 = 5 e 2 = 0 P 1 = 7 e 3 = 0 P 2 = 7 2 e 4 = 0 P 3 = 7 3 e 5 = 1 P 4 = 7 4 P 5 = 7 5 + 5 \large{(\begin{matrix} { e }_{ 1 }=7 & { P }_{ 0 }=5 \\ { e }_{ 2 }=0 & { P }_{ 1 }=7 \\ { e }_{ 3 }=0 & { P }_{ 2 }={ 7 }^{ 2 } \\ { e }_{ 4 }=0 & { P }_{ 3 }={ 7 }^{ 3 } \\ { e }_{ 5 }=1 & { P }_{ 4 }={ 7 }^{ 4 } \end{matrix}\\ { P }_{ 5 }={ 7 }^{ 5 }+5}

[ P 3 = e 1 P 1 e 2 P 1 + e 3 × 3 P 5 = e 1 P 4 e 2 P 3 + e 3 P 2 e 4 P 1 + e 5 P 0 ] \large{\left[ \because \quad { P }_{ 3 }={ e }_{ 1 }{ P }_{ 1 }-{ e }_{ 2 }{ P }_{ 1 }+{ e }_{ 3 }\times 3\\ \quad \quad { P }_{ 5 }={ e }_{ 1 }{ P }_{ 4 }-{ e }_{ 2 }{ P }_{ 3 }+{ e }_{ 3 }{ P }_{ 2 }-{ e }_{ 4 }{ P }_{ 1 }+{ e }_{ 5 }{ P }_{ 0 } \right] }

We finally get after plugging in the values

= 7 5 + 5 5 × 7 5 + 10 × 7 5 10 × 7 5 + 5 × 7 5 5 × 7 5 \large{=7^5+5\color{#D61F06}{-5\times 7^5}\color{#3D99F6}{+10\times 7^5}\color{#3D99F6}{-10\times 7^5}\color{#D61F06}{+5\times 7^5} -5\times 7^5}

= 7 5 + 5 5 × 7 5 = 67233 \large{=7^5+5-5\times 7^5=\boxed{-67233}}

can the problem be solved without using newton's identities ?

Utkarsh Grover - 5 years, 8 months ago

Log in to reply

I don't know, but it seems to be a difficult rather tedious approach without using newtons identities

Tanishq Varshney - 5 years, 8 months ago

Log in to reply

Nice Solution, my approach was slightly different, so I did a lot of calculations. Try this

Department 8 - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...