Can u find this relation?

Algebra Level 3

One root is square of the other root of the equation x 2 + p x + q = 0 x^2+px+q=0 , then the relation between p p and q q is?

p 3 + q ( 3 p + 1 ) + q 2 = 0 p^3+q(3p+1)+q^2=0 p 3 q ( 3 p + 1 ) + q 2 = 0 p^3-q(3p+1)+q^2=0 p 3 q ( 3 p 1 ) + q 2 = 0 p^3-q(3p-1)+q^2=0 p 3 + q ( 3 p 1 ) + q 2 = 0 p^3+q(3p-1)+q^2=0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Nov 27, 2016

The two roots satisfy:

x = p ± ( p 2 4 q ) 2 x = \frac{-p \pm \sqrt(p^2 - 4q)}{2} ;

and if one root is the square of the other, then we obtain:

p + ( p 2 4 q ) 2 = ( p ( p 2 4 q ) 2 ) 2 p + ( p 2 4 q ) 2 = p 2 + 2 p ( p 2 4 q ) + ( p 2 4 q ) 4 \frac{-p + \sqrt(p^2 - 4q)}{2} = (\frac{-p - \sqrt(p^2 - 4q)}{2})^2 \Rightarrow \frac{-p + \sqrt(p^2 - 4q)}{2} = \frac{p^2 + 2p*\sqrt(p^2 - 4q) + (p^2 - 4q)}{4} ;

or p + ( p 2 4 q ) 2 = 2 p 2 + 2 p ( p 2 4 q ) 4 q ) 4 \frac{-p + \sqrt(p^2 - 4q)}{2} = \frac{2p^2 + 2p*\sqrt(p^2 - 4q) - 4q)}{4} ;

or 2 [ p + ( p 2 4 q ) ] = 2 p 2 + 2 p ( p 2 4 q ) 4 q 2*[-p + \sqrt(p^2 - 4q)] = 2p^2 + 2p*\sqrt(p^2 - 4q) - 4q ;

or ( 2 2 p ) ( p 2 4 q ) = 2 p 2 + 2 p 4 q (2 - 2p)\sqrt(p^2 - 4q) = 2p^2 + 2p - 4q ;

or 4 ( 1 2 p + p 2 ) ( p 2 4 q ) = ( 2 p 2 + 2 p 4 q ) 2 4(1 - 2p + p^2)*(p^2 - 4q) = (2p^2 + 2p - 4q)^2 ;

or 4 ( p 2 2 p 3 + p 4 4 q + 8 p q 4 p 2 q ) = 4 p 4 + 8 p 3 + 4 p 2 16 p 2 q 16 p q + 16 q 2 4(p^2 - 2p^3 + p^4 - 4q + 8pq - 4p^2q) = 4p^4 + 8p^3 + 4p^2 - 16p^2q - 16pq + 16q^2 ;

or 16 p 3 48 p q + 16 q 2 + 16 q = 0 16p^3 - 48pq + 16q^2 + 16q = 0 ;

or p 3 3 p q + q 2 + q = 0 p^3 - 3pq + q^2 + q = 0 ;

or p 3 q ( 3 p 1 ) + q 2 = 0 \boxed{p^3 - q(3p - 1) + q^2 = 0} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...