Find the integer value of n such that 2 2 0 0 − ( 2 1 9 2 × 3 1 ) + 2 n is a perfect square.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I too did the same sir
The question can be re-writen as ( 2 1 9 2 ) ( 2 8 − 3 1 + 2 n − 1 9 2 ) So 2 5 6 − 3 1 + 2 n − 1 9 2 should be a perfect square Which implies 2 2 5 + 2 n − 1 9 2 should be a perfect square. (225 + 64 = 289) Therefore n = 192+6 = 198
2 2 0 0 − 2 1 9 2 ∗ 3 1 + 2 n = 2 1 9 2 ( 2 8 − 3 1 ) + 2 n
= 2 1 9 2 ∗ ( 2 5 6 − 3 1 ) + 2 n
= 2 1 9 2 ∗ 2 2 5 + 2 n
Therefore for some m ϵ N
2 n = m 2 − 2 1 9 2 ∗ 2 2 5
= m 2 − ( 2 9 6 ∗ 1 5 ) 2
= ( m − 2 9 6 ∗ 1 5 ) ( m + 2 9 6 ∗ 1 5 )
So m − 2 9 6 ∗ 1 5 = 2 a and m + 2 9 6 ∗ 1 5 = 2 a + b for some non-negative integers a,b.
Hence 2 9 7 ∗ 1 5 = 2 a + b − 2 a = 2 a ( 2 b − 1 )
⇒ 2 a = 2 9 7 and 2 b − 1 = 1 5 i . e . , a = 9 7 a n d b = 4
∴ n = 2 a + b = 1 9 8
This is a question from IIT foundation class 9 book
@Akshat Sharda Well it may be. But i found it interesting and henceforth shared it :)
Supomos n = 1 9 2 , segue que:
2 2 0 0 − 2 1 9 2 ⋅ 3 1 + 2 n = 2 1 9 2 ( 2 8 − 3 1 + 2 0 ) 2 1 9 2 ⋅ 2 2 6
Como podemos notar, 226 não é um quadrado perfeito.
Logo, devemos encontrar um número, cuja potência é da base dois, que somado a 225 seja um quadrado perfeito!
O número em questão é o 2 6 .
Daí,
2 n = 2 1 9 2 ⋅ 2 6 2 n = 2 1 9 8 n = 1 9 8
Problem Loading...
Note Loading...
Set Loading...
2 2 0 0 − ( 3 1 ) 2 1 9 2 + 2 n = 2 2 0 0 − ( 3 2 − 1 ) 2 1 9 2 + 2 n
= 2 2 0 0 − ( 2 5 − 1 ) 2 1 9 2 + 2 n = 2 2 0 0 − 2 1 9 7 + 2 1 9 2 + 2 n
= 2 1 9 2 ( 2 8 − 2 5 + 1 ) + 2 n = 2 1 9 2 ( 2 8 − 2 ˙ 2 4 + 1 ) + 2 n
= 2 1 9 2 ( 2 4 − 1 ) 2 + 2 n = 2 1 9 2 ( 1 5 2 ) + 2 n = 2 1 9 2 ( 1 5 2 + 2 n − 1 9 2 )
We note that 2 2 0 0 − ( 3 1 ) 2 1 9 2 + 2 n is perfect square, when 1 5 and 2 n − 1 9 2 are the smaller numbers of a set of Pythagoras numbers and the set is { 8 , 1 5 , 1 7 } :
⇒ 2 n − 1 9 2 = 8 2 = 2 6 ⇒ n − 1 9 2 = 6 ⇒ n = 1 9 8 .