Can u solve? Part-5

Find the integer value of n n such that 2 200 ( 2 192 × 31 ) + 2 n 2^{200}-(2^{192} \times 31)+2^n is a perfect square.


The answer is 198.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Dec 23, 2014

2 200 ( 31 ) 2 192 + 2 n = 2 200 ( 32 1 ) 2 192 + 2 n 2^{200}-(31)2^{192}+2^n = 2^{200}-(32-1)2^{192}+2^n

= 2 200 ( 2 5 1 ) 2 192 + 2 n = 2 200 2 197 + 2 192 + 2 n = 2^{200}-(2^5-1)2^{192}+2^n = 2^{200}- 2^{197}+ 2^{192} +2^n

= 2 192 ( 2 8 2 5 + 1 ) + 2 n = 2 192 ( 2 8 2 ˙ 2 4 + 1 ) + 2 n = 2^{192}(2^8- 2^5 +1) +2^n = 2^{192}(2^8- 2\dot{}2^4 +1) +2^n

= 2 192 ( 2 4 1 ) 2 + 2 n = 2 192 ( 1 5 2 ) + 2 n = 2 192 ( 1 5 2 + 2 n 192 ) = 2^{192}(2^4-1)^2 +2^n = 2^{192}(15^2) +2^n = 2^{192}(15^2 +2^{n-192})

We note that 2 200 ( 31 ) 2 192 + 2 n 2^{200}-(31)2^{192}+2^n is perfect square, when 15 15 and 2 n 192 \sqrt{2^{n-192}} are the smaller numbers of a set of Pythagoras numbers and the set is { 8 , 15 , 17 } \{8,15,17\} :

2 n 192 = 8 2 = 2 6 n 192 = 6 n = 198 \Rightarrow 2^{n - 192} = 8^2 = 2^6 \quad \Rightarrow n - 192 = 6 \quad \Rightarrow n = \boxed {198} .

I too did the same sir

Mehul Chaturvedi - 6 years, 5 months ago

The question can be re-writen as ( 2 192 ) ( 2 8 31 + 2 n 192 ) (2^{192})(2^{8} - 31 + 2^{n-192}) So 256 31 + 2 n 192 256-31+2^{n-192} should be a perfect square Which implies 225 + 2 n 192 225 + 2^{n-192} should be a perfect square. (225 + 64 = 289) Therefore n = 192+6 = 198

Sai Venkatesh
Dec 23, 2014

2 200 2 192 31 + 2 n = 2 192 ( 2 8 31 ) + 2 n 2^{200}-2^{192}*31+2^n = 2^{192}(2^8-31)+2^n

= 2 192 ( 256 31 ) + 2 n 2^{192}*(256-31)+2^n

= 2 192 225 + 2 n 2^{192}*225+2^n

Therefore for some m ϵ N m\epsilon N

2 n = m 2 2 192 225 2^n=m^2-2^{192}*225

= m 2 ( 2 96 15 ) 2 m^2-(2^{96}*15)^2

= ( m 2 96 15 ) ( m + 2 96 15 ) (m-2^{96}*15)(m+2^{96}*15)

So m 2 96 15 = 2 a m-2^{96}*15=2^a and m + 2 96 15 = 2 a + b m+2^{96}*15=2^{a+b} for some non-negative integers a,b.

Hence 2 97 15 = 2 a + b 2 a = 2 a ( 2 b 1 ) 2^{97}*15=2^{a+b}-2^a=2^a(2^b-1)

2 a = 2 97 \Rightarrow 2^a=2^{97} and 2 b 1 = 15 i . e . , a = 97 a n d b = 4 2^b-1=15 i.e., a=97 and b=4

n = 2 a + b = 198 \therefore n=2a+b=198

Akshat Sharda
Aug 13, 2015

This is a question from IIT foundation class 9 book

@Akshat Sharda Well it may be. But i found it interesting and henceforth shared it :)

Sai Venkatesh - 5 years, 10 months ago

Log in to reply

Yeah , I agree its a good question :-)

Akshat Sharda - 5 years, 10 months ago
Daniel Ferreira
Jan 31, 2015

Supomos n = 192 n = 192 , segue que:

2 200 2 192 31 + 2 n = 2 192 ( 2 8 31 + 2 0 ) 2 192 226 2^{200} - 2^{192} \cdot 31 + 2^n = \\\\ 2^{192}(2^8 - 31 + 2^0) \\\\ 2^{192} \cdot 226

Como podemos notar, 226 não é um quadrado perfeito.

Logo, devemos encontrar um número, cuja potência é da base dois, que somado a 225 seja um quadrado perfeito!

O número em questão é o 2 6 2^6 .

Daí,

2 n = 2 192 2 6 2 n = 2 198 n = 198 2^n = 2^{192} \cdot 2^6 \\\\ 2^n = 2^{198} \\\\ \boxed{n = 198}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...