A calculus problem by Amal Hari

Calculus Level 2

0 e t t 999 d t = x ! \int_{0}^{\infty} e^{-t} t^{999} dt = x!

Find x x .


The answer is 999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Parth Sankhe
Jan 7, 2019

Integrating by parts,

I 999 = ( t 999 e t + 999 t 998 e t d t ) 0 I_{999}=(-t^{999}e^{-t}+999\int t^{998}e^{-t}dt)^{∞}_{0}

After putting the limits we get this as,

I 999 = 999 I 998 I_{999}=999I_{998}

If we follow the same procedure again, we will get that I n = n I n 1 I_{n}=nI_{n-1} . Thus,

I 999 = 999 × 998 × 997.... × 2 × 1 × ( 0 e t d t ) = 999 ! I_{999}=999×998×997....×2×1×(\int ^{∞}_{0} e^{-t}dt)=999!

I = 0 e t t 999 d t Since gamma function Γ ( s ) = 0 t s 1 e t d t = Γ ( 1000 ) and Γ ( n ) = ( n 1 ) ! = 999 ! \begin{aligned} I & = \int_0^\infty e^{-t}t^{999} dt & \small \color{#3D99F6} \text{Since gamma function }\Gamma (s) = \int_0^\infty t^{s-1}e^{-t} dt \\ & = \Gamma (1000) & \small \color{#3D99F6} \text{and } \Gamma(n) = (n-1)! \\ & = 999! \end{aligned}

Therefore, x = 999 x = \boxed{999} .


Reference: Gamma function

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...