Can we assume that x = y = z x=y=z ?

Algebra Level 5

z x y ( 1 + 5 z ) ( 4 z + 3 x ) ( 5 x + 6 y ) ( y + 18 ) \large \frac{zxy}{(1+5z)(4z+3x)(5x+6y)(y+18)}

Suppose the maximum value of the expression above for non-negative reals x x , y y and z z is of the form 1 r \dfrac{1}{r} for some r R r\in \mathbb{R} . Find r r .


The answer is 5120.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Manuel Kahayon
Jul 5, 2016

We simply use a direct application of Holder's Inequality (Which made me wonder, why the high level?)

( ( 1 + 5 z ) ( 4 z + 3 x ) ( 5 x + 6 y ) ( y + 18 ) ) 1 4 ( ( 1 ) ( 4 z ) ( 5 x ) ( y ) ) 1 4 + ( ( 5 z ) ( 3 x ) ( 6 y ) ( 18 ) ) 1 4 \large ((1+5z)(4z+3x)(5x+6y)(y+18))^\frac{1}{4} \geq ((1)(4z)(5x)(y))^\frac{1}{4}+((5z)(3x)(6y)(18))^\frac{1}{4} (If you're wondering how the terms got multiplied, try pairing up the terms in such a way that each term gets x y z xyz as a factor)

This simplifies to ( ( 1 + 5 z ) ( 4 z + 3 x ) ( 5 x + 6 y ) ( y + 18 ) ) 1 4 4 ( 20 x y z ) 1 4 \large ((1+5z)(4z+3x)(5x+6y)(y+18))^\frac{1}{4} \geq 4(20xyz)^\frac{1}{4}

Raising both sides to the 4 4 th power gives us ( 1 + 5 z ) ( 4 z + 3 x ) ( 5 x + 6 y ) ( y + 18 ) 5120 x y z (1+5z)(4z+3x)(5x+6y)(y+18) \geq 5120xyz

Obtaining the reciprocal of both sides then multiplying both sides by x y z xyz gives us

z x y ( 1 + 5 z ) ( 4 z + 3 x ) ( 5 x + 6 y ) ( y + 18 ) 1 5120 \large \frac{zxy}{(1+5z)(4z+3x)(5x+6y)(y+18)} \leq \frac{1}{5120}

So, our answer is 5120 \boxed{5120} .


P.S. You can check whether equality can hold by the constraint that the ratios of the terms in the parentheses must be constant. Doing so yields x = 12 5 x = \frac{12}{5} , y = 6 y = 6 and z = 3 5 z = \frac{3}{5} , which is our requirement for the minimum value.

Also, even if the variables can be equal to zero, and Holder's inequality only accepts positive reals, we cannot have a variable equal to zero, since the whole expression will be equal to zero, which is absolutely not a possible maximum.

Wonderful solution! =D

Pi Han Goh - 4 years, 11 months ago

where can i find a proof of the holder's inequality?

Willia Chang - 4 years, 11 months ago

Log in to reply

Hölder's inequality .

Pi Han Goh - 4 years, 11 months ago

Oh that's nice!

Calvin Lin Staff - 4 years, 11 months ago
Sam Bealing
Jul 4, 2016

We begin by establishing a series of inequalities:

{ 1 + 5 z = 1 + 5 z 3 + 5 z 3 + 5 z 3 4 125 z 3 27 4 4 z + 3 x = 4 z + x + x + x 4 4 x 3 z 4 5 x + 6 y = 5 x + 2 y + 2 y + 2 y 4 40 x y 3 4 y + 18 = y + 6 + 6 + 6 4 216 y 4 \begin{cases} 1+5z =1+\dfrac{5z}{3}+\dfrac{5z}{3}+\dfrac{5z}{3} \geq 4 \sqrt[4]{\dfrac{125z^3}{27}} \\ 4z+3x =4z+x+x+x \geq 4 \sqrt[4]{4 x^3 z} \\ 5x+6y =5x+2y+2y+2y \geq 4 \sqrt[4]{40 x y^3} \\ y+18 = y+6+6+6 \geq 4 \sqrt[4]{216y} \end{cases}

Using these inequality on the original inequality gives:

x y z ( 1 + 5 z ) ( 4 z + 3 x ) ( 5 x + 6 y ) ( y + 18 ) x y z 256 160000 x 4 y 4 z 4 4 = x y z 5120 x y z = 1 5120 \dfrac{xyz}{(1+5z)(4z+3x)(5x+6y)(y+18)} \geq \dfrac{xyz}{256 \sqrt[4]{160000x^4 y^4 z^4}}=\dfrac{xyz}{5120xyz}=\dfrac{1}{5120}

Now this minimum value occurs when x = 12 5 , y = 6 , z = 3 5 x=\dfrac{12}{5},y=6,z=\dfrac{3}{5} so we have:

1 r = 1 5120 r = 5120 \dfrac{1}{r}=\dfrac{1}{5120} \implies \boxed{\boxed{r=5120}}

Moderator note:

What is the motivation for the seemingly random split of terms?

What is the motivation for the seemingly random split of terms?

Calvin Lin Staff - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...