Can we go back?

Calculus Level 5

0 ln ( x ) 1 + x 4 d x \large \int_0^\infty \frac{\ln(x)}{1+x^4} \, dx

If the integral above equals to π A A B -\dfrac{\pi^A}{\sqrt{A^B}} for integers A A and B B , find the value of A + B A+B .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Parth Lohomi
Aug 19, 2015

Or

I ( s ) = 1 16 0 y s 3 4 d y 1 + y . (1) I(s)=\dfrac{1}{16}\int_0^{\infty}\dfrac{y^{s-\frac34}dy}{1+y}.\tag{1}

The integral you are looking for is obtained as I ( 0 ) I'(0) after the change of variables y = x 4 y=x^4

Let us make in (1) another change of variables

t = y 1 + y y = t 1 t , d y = d t ( 1 t ) 2 \displaystyle t=\frac{y}{1+y}\Longleftrightarrow y=\frac{t}{1-t},dy=\frac{dt}{(1-t)^2} This gives

I ( s ) = 1 16 0 1 t ( t 1 t ) s 7 4 d t ( 1 t ) 2 = = 1 16 0 1 t s 3 4 ( 1 t ) s 1 4 d t = = 1 16 B ( s + 1 4 , s + 3 4 ) = = 1 16 Γ ( s + 1 4 ) Γ ( s + 3 4 ) = = π 16 sin π ( s + 1 4 ) . \begin{aligned} I(s)&=\frac{1}{16}\int_0^1t\cdot\left(\frac{t}{1-t}\right)^{s-\frac74}\cdot \frac{dt}{(1-t)^2}=\\ &=\frac{1}{16}\int_0^1t^{s-\frac34}(1-t)^{-s-\frac{1}{4}}dt=\\& =\frac{1}{16}B\left(s+\frac14,-s+\frac34\right)=\\& =\frac{1}{16}\Gamma\left(s+\frac14\right)\Gamma\left(-s+\frac34\right)=\\ &=\frac{\pi}{16\sin\pi\left(s+\frac14\right)}. \end{aligned}

Differentiating this with respect to s, we indeed get

I ( 0 ) = π 2 cos π 4 16 sin 2 π 4 = π 2 2 16 \boxed{I'(0)=-\dfrac{\pi^2\cos\dfrac{\pi}{4}}{16\sin^2\dfrac{\pi}{4}}=-\dfrac{\pi^2\sqrt{2}}{16}}

@Parth Lohomi , we really liked your comment, and have converted it into a solution. If you subscribe to this solution, you will receive notifications about future comments.

Brilliant Mathematics Staff - 5 years, 9 months ago
Hasan Kassim
Aug 8, 2015

Let

f ( n ) = 0 x n 1 + x 4 d x \displaystyle f(n) = \int_0^{\infty} \frac{x^n}{1+x^4} dx

Where we seek f ( 0 ) f'(0) .

The integral now is a particular integral of the form :

0 x n 1 + x m d x Which evaluates to π m csc ( n + 1 m π ) \displaystyle \int_0^{\infty} \frac{x^n}{1+x^m} dx \; \; \text{Which evaluates to} \; \; \frac{\pi}{m} \csc (\frac{n+1}{m} \pi )

Hence:

f ( n ) = π 4 csc ( n + 1 4 π ) \displaystyle f(n) = \frac{\pi}{4} \csc (\frac{n+1}{4} \pi )

f ( n ) = π 2 16 csc ( n + 1 4 π ) cot ( n + 1 4 π ) = n = 0 π 2 8 2 \displaystyle f'(n) = - \frac{\pi^2}{16} \csc (\frac{n+1}{4} \pi ) \cot (\frac{n+1}{4} \pi ) \overset{n=0}{=} \boxed{-\frac{\pi^2}{8\sqrt{2}} }

For the sake of completeness, I will prove the particular integral I have used:

0 x n 1 + x m d x \displaystyle \int_0^{\infty} \frac{x^n}{1+x^m} dx

= Let u = 1 1 + x m 1 0 ( u ) ( ( 1 u 1 ) 1 m ) n ( 1 u 2 1 m ( 1 u 1 ) 1 m 1 d u ) \displaystyle \overset{{\color{#D61F06}{\text{Let} \; u= \frac{1}{1+x^m} }}}{=} \int_1^0 (u)\bigg((\frac{1}{u} -1)^{\frac{1}{m} } \bigg)^n \bigg( -\frac{1}{u^2} \frac{1}{m}(\frac{1}{u} -1)^{\frac{1}{m} -1 } du \bigg)

= 1 m 0 1 u n + 1 m ( 1 u ) n + 1 m 1 d u = Beta Function 1 m B ( 1 n + 1 m , n + 1 m ) \displaystyle = \frac{1}{m} \int_0^1 u^{-\frac{n+1}{m} } (1-u)^{\frac{n+1}{m} -1 } du \overset{{\color{#D61F06}{\text{Beta Function}}}}{=} \frac{1}{m} B(1-\frac{n+1}{m} , \frac{n+1}{m} )

= Beta Function Property 1 m Γ ( 1 n + 1 m ) Γ ( n + 1 m ) Γ ( 1 n + 1 m + n + 1 m ) \displaystyle \overset{{\color{#D61F06}{\text{Beta Function Property}}}}{=} \frac{1}{m} \frac{ \Gamma (1-\frac{n+1}{m} ) \Gamma ( \frac{n+1}{m} ) }{\Gamma (1-\frac{n+1}{m} +\frac{n+1}{m} ) }

= Euler’s reflection Formula π m csc ( n + 1 m π ) \displaystyle \overset{{\color{#D61F06}{\text{Euler's reflection Formula}}}}{=} \frac{\pi}{m} \csc (\frac{n+1}{m} \pi )

(This comment has been converted into a solution)

Parth Lohomi - 5 years, 10 months ago

Log in to reply

@Pi Han Goh , @hasan kassim ? what say?

Parth Lohomi - 5 years, 10 months ago

Log in to reply

nice work!!!! I didn't thought of differentiating through the integral!

@Brilliant Mathematics Please convert this into a solution!

Pi Han Goh - 5 years, 10 months ago

Good work with the differentiating through the integral technique :)

Hasan Kassim - 5 years, 10 months ago

You can do the same using The Master Theorem.

Kartik Sharma - 5 years, 9 months ago

NICE!

Do you have the proof for x n 1 + x m d x = π m csc ( n + 1 m π ) \displaystyle \int \frac{x^n}{1+x^m} \, dx = \frac\pi m \csc\left(\frac{n+1}m\pi\right) ?

Pi Han Goh - 5 years, 10 months ago

Log in to reply

Sure!

I have added the proof in the solution :)

Hasan Kassim - 5 years, 10 months ago

Log in to reply

THANKS! YOU ROCK!

Pi Han Goh - 5 years, 10 months ago
Kartik Sharma
Jul 29, 2015

Simple contour integration application.

z z is in the complex plane and the contour is taken as a semicircle of infinte radius above positive real axis.

l n ( z ) 1 + z 4 = l n ( z ) 1 + z 4 + arc l n ( z ) 1 + z 4 \displaystyle \oint{\frac{ln(z)}{1+{z}^{4}}} = \int_{-\infty}^{\infty}{\frac{ln(z)}{1+{z}^{4}}} + \int_{\text{arc}}{\frac{ln(z)}{1+{z}^{4}}}

The last integral(on RHS) 0 \rightarrow 0 as z |z|\rightarrow \infty .

Then, the integral we want to find becomes -

1 2 2 π ι ( R e s ( l n ( z ) 1 + z 4 , z i ) ) \displaystyle \frac{1}{2} 2\pi\iota\left(\sum{Res\left(\frac{ln(z)}{1+{z}^{4}}, {z}_{i}\right)}\right)

Evaluating the residues at poles - e ι π / 4 , e 3 ι π / 4 {e}^{\iota\pi/4}, {e}^{3\iota\pi/4} and summing comes out to be -

π 2 8 2 \displaystyle -\frac{{\pi}^{2}}{8\sqrt{2}}

English! Please!

Pi Han Goh - 5 years, 10 months ago

Log in to reply

I know this is a bit crazy solution and I know there is a better solution out there using Feynman's method but just for variety, I have posted this one. :P

Kartik Sharma - 5 years, 10 months ago

Got it! Just English solutions! XD

Kazem Sepehrinia - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...