Can we use a 3 + b 3 a^3+b^3 or a 3 b 3 a^3-b^3 formula?

Algebra Level 4

( 2 3 1 ) ( 3 3 1 ) ( 4 3 1 ) ( 100 0 3 1 ) ( 2 3 + 1 ) ( 3 3 + 1 ) ( 4 3 + 1 ) ( 100 0 3 + 1 ) = ? \frac{(2^3-1)(3^3-1)(4^3-1)\cdots(1000^3-1)}{(2^3+1)(3^3+1)(4^3+1)\cdots(1000^3+1)}=\, ?

Submit your answer to three decimal places.


The answer is 0.666.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 23, 2016

Relevant wiki: Telescoping Series - Product

P = n = 2 1000 n 3 1 n 3 + 1 = n = 2 1000 ( n 1 ) ( n 2 + n + 1 ) ( n + 1 ) ( n 2 n + 1 ) = n = 2 1000 ( n 1 ) n = 2 1000 ( n 2 + n + 1 ) n = 2 1000 ( n + 1 ) n = 2 1000 ( n 2 n + 1 ) Note that ( n + 1 ) 2 ( n + 1 ) + 1 = n 2 + n + 1 = n = 1 999 n n = 2 1000 ( n 2 + n + 1 ) n = 3 1001 n n = 1 999 ( n 2 + n + 1 ) = 2 1001001 1000 1001 3 = 333667 500500 0.667 \begin{aligned} P & = \prod_{n=2}^{1000} \frac {n^3-1}{n^3+1} \\ & = \prod_{n=2}^{1000} \frac {(n-1)(n^2+n+1)}{(n+1)(n^2-n+1)} \\ & = \frac {\color{#3D99F6}{\prod_{n=2}^{1000} (n-1)} \prod_{n=2}^{1000} (n^2+n+1)}{\color{#3D99F6}{\prod_{n=2}^{1000} (n+1)} \prod_{n=2}^{1000} (\color{#D61F06}{n^2-n+1})} \quad \quad \small \color{#D61F06}{\text{Note that }(n+1)^2 - (n+1) +1 = n^2 + n +1} \\ & = \frac {\color{#3D99F6}{\prod_{n=1}^{999} n} \prod_{n=2}^{1000} (n^2+n+1)}{\color{#3D99F6}{\prod_{n=3}^{1001} n} \prod_{n=\color{#D61F06}{1}} ^{\color{#D61F06}{999}} (\color{#D61F06}{n^2+n+1})} \\ & = \frac {\color{#3D99F6}{2} \cdot 1001001}{\color{#3D99F6}{1000 \cdot 1001} \cdot \color{#D61F06}{3}} \\ & = \frac {333667} {500500} \\ & \approx \boxed{0.667} \end{aligned}

Sir how have you changed ( n 2 n + 1 ) (n^2-n+1) to ( n 2 + n + 1 ) (n^2+n+1) ??? Thank you

Chirayu Bhardwaj - 4 years, 11 months ago

Log in to reply

Note that n 2 n + 1 = ( n 1 ) 2 + ( n 1 ) + 1 n^{2} - n + 1 = (n - 1)^{2} + (n - 1) + 1 , so

n = 2 1000 ( n 2 n + 1 ) = n = 2 1000 ( ( n 1 ) 2 + ( n 1 ) + 1 ) = k = 1 999 ( k 2 + k + 1 ) \displaystyle\prod_{n=2}^{1000}(n^{2} - n + 1) = \prod_{n=2}^{1000}((n - 1)^{2} + (n - 1) + 1) = \prod_{k=1}^{999}(k^{2} + k + 1) ,

where k = n 1 k = n - 1 goes from 1 1 to 999 999 as n n goes from 2 2 to 1000 1000 .

Brian Charlesworth - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...