Can you solve it?

Calculus Level 4

Which of the following is an antiderivative of f ( x ) = ln ( ln x ) + 1 ( ln x ) 2 f(x) = \ln(\ln x) + \dfrac1{(\ln x)^2} ?

ln ( ln x ) x ( ln x ) 2 \ln(\ln x)-\frac{x}{(\ln x)^2} ln ( ln x ) \ln(\ln x) x ln x ln x \frac{x}{\ln x}-\ln x x ln ( ln x ) x ln x x\ln (\ln x)-\dfrac{x}{\ln x}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sparsh Sarode
Jun 3, 2016

Putting ln x = t \ln x=t

( ln t + 1 t 2 ) e t d t \large \displaystyle \int\Big( \ln t+\dfrac{1}{t^2}\Big)e^tdt

( ( ln t + 1 t ) e t d t ( 1 t 1 t 2 ) e t d t ) \large \displaystyle \int\Bigg(\Big( \ln t+\dfrac{1}{t}\Big)e^tdt-\Big(\dfrac{1}{t}-\dfrac{1}{t^2}\Big)e^tdt\Bigg)

( ( ln ( t ) e t ) ( e t t ) ) \large \displaystyle \Bigg(\Big(\ln(t) e^t\Big)-\Big(\dfrac{e^t}{t}\Big)\Bigg) ( using ( f ( x ) + f ( x ) ) e x = e x ( f ( x ) ) ) \large \displaystyle \Big( \text{using} \int(f(x)+f'(x))e^x=e^x(f(x))\Big)

Replacing t t with ln x \ln x ,

f ( x ) = x ln ( ln x ) x ln x \large \displaystyle \color{#3D99F6}{\boxed{f'(x)=x \ln (\ln x)-\dfrac{x}{\ln x}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...