Can you calculate least value?

Geometry Level 5

P P be a point such that P P 1 2 + P P 2 2 + . . . + P P 5 2 = k {P{P_{1}}}^{2} + {P{P_{2}}}^{2} + ... + {P{P_{5}}}^{2} = k where P r P_{r} is point with co-ordinates ( r , r 2 ) (r,{r}^{2}) . Find the least value of k k for which such point P P exists.

Try more from my set Geometry Problems .


The answer is 384.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Julia Lange
Jun 5, 2015

We can easily notice that points we are asked about lie on the parabola y = x 2 y=x^2 , for x = { 1 , 2 , 3 , 4 , 5 } y = { 1 , 4 , 9 , 16 , 25 } x=\{1,2,3,4,5\} \rightarrow y=\{1,4,9,16,25\} .

Let the coordinates of P be: P = ( x p , y p ) P=(x_p,y_p) .

So now we can write k k as a function dependent on x p x_p and y p y_p , namely:

k ( x p , y p ) = i = 1 5 [ ( x p x i ) 2 + ( y p y i ) 2 ] = i = 1 5 [ ( x p i ) 2 + ( y p i 2 ) 2 ] k(x_p,y_p)= \sum _{ i=1 }^{ 5 }{ \left[ { \left( { x }_{ p }-{ x }_{ i } \right) }^{ 2 }+{ \left( { y }_{ p }-{ y }_{ i } \right) }^{ 2 } \right] } = \sum _{ i=1 }^{ 5 }{ \left[ { \left( { x }_{ p }-i \right) }^{ 2 }+{ \left( { y }_{ p }-{ i }^{ 2 } \right) }^{ 2 } \right] }

Expanding, we get:

k ( x p , y p ) = ( x p 1 ) 2 + ( y p 1 ) 2 + ( x p 2 ) 2 + ( y p 4 ) 2 + k(x_p,y_p)= { ( { x }_{ p }-1) }^{ 2 }+ { ( { y }_{ p }-1) }^{ 2 } + { ( { x }_{ p }-2) }^{ 2 }+ { ( { y }_{ p }-4) }^{ 2 } + ( x p 3 ) 2 + ( y p 9 ) 2 + ( x p 4 ) 2 + ( y p 16 ) 2 + ( x p 5 ) 2 + ( y p 25 ) 2 = { ( { x }_{ p }-3) }^{ 2 }+ { ( { y }_{ p }-9) }^{ 2 } + { ( { x }_{ p }-4) }^{ 2 }+ { ( { y }_{ p }-16) }^{ 2 } + { ( { x }_{ p }-5) }^{ 2 }+ { ( { y }_{ p }-25) }^{ 2 } = = 5 x p 2 + 5 y p 2 30 x p 110 y p + 1034 =5{{x}_{p}}^{2}+5{{y}_{p}}^{2}-30{x}_{p}-110{y}_{p}+1034

Now we need to find critical points of the function k ( x p , y p ) k(x_p,y_p) :

k ( x p , y p ) x p = 10 x p 30 = 0 x p = 3 \frac{\partial k(x_p,y_p)}{\partial x_p}= 10x_p-30=0 \Rightarrow x_p=3

k ( x p , y p ) y p = 10 y p 110 = 0 y p = 11 \frac{\partial k(x_p,y_p)}{\partial y_p}= 10y_p-110=0 \Rightarrow y_p=11

Substituting, we get:

k ( 3 , 11 ) = 384 k(3,11)= 384

N o t e : Note: generally, we should also make sure that the found critical point is the minimum. To do so we need to calculate determinant of a matrix in our critical point:

[ 2 k ( x p , y p ) x p 2 2 k ( x p , y p ) x p y p 2 k ( x p , y p ) y p x p 2 k ( x p , y p ) y p 2 ] \begin{bmatrix} \frac { { \partial }^{ 2 }k({ x }_{ p },{ y }_{ p }) }{ { \partial { x }_{ p } }^{ 2 } } & \frac { { \partial }^{ 2 }k({ x }_{ p },{ y }_{ p }) }{ { \partial { x }_{ p } }\partial { y }_{ p } } \\ \frac { { \partial }^{ 2 }k({ x }_{ p },{ y }_{ p }) }{ { \partial { y }_{ p }\partial { x }_{ p } } } & \frac { { \partial }^{ 2 }k({ x }_{ p },{ y }_{ p }) }{ { \partial { y }_{ p } }^{ 2 } } \end{bmatrix}

Which in our problem takes the form:

= [ 10 0 0 10 ] = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}

So the determinant is:

H ( 3 , 11 ) = 10 0 0 10 = 100 > 0 H(3,11)=\begin{vmatrix} 10 & 0 \\ 0 & 10 \end{vmatrix}=100 >0

Because this determinant is greater than 0, point ( 3 , 11 ) (3,11) is a minimum.

Since the equation k(Xp, Yp) contains individual terms in x and y, we can separate them and fund their minimums separately. That way, we don't have to calculate Jacobian (determinant) to verify if it's minimum. We can just double differentiate the individual terms.

Nagabhushan S N - 4 years, 4 months ago

TIL: Jacobian :) same solution but i did not expand the function before partial diff

Vincent Miller Moral - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...