Can you Divide?

Geometry Level 3

Simplify :

2 cos ( 1 0 ) sin ( 4 0 ) cos ( 4 0 ) \large \dfrac{2\cos(10^{\circ})-\sin(40^{\circ})}{\cos(40^{\circ})}

cos ( 10 ) \cos(10) π 2 \dfrac{\pi}{2} None of the above 3 \sqrt{3} π 3 \dfrac{\pi}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We have that

cos ( 1 0 ) = sin ( 10 0 ) = sin ( 6 0 ) cos ( 4 0 ) + cos ( 6 0 ) sin ( 4 0 ) = 3 cos ( 4 0 ) 2 + sin ( 4 0 ) 2 \cos(10^{\circ}) = \sin(100^{\circ}) = \sin(60^{\circ})\cos(40^{\circ}) + \cos(60^{\circ})\sin(40^{\circ}) = \dfrac{\sqrt{3}\cos(40^{\circ})}{2} + \dfrac{\sin(40^{\circ})}{2}

2 cos ( 1 0 ) sin ( 4 0 ) = 3 cos ( 4 0 ) 2 cos ( 1 0 ) sin ( 4 0 ) cos ( 4 0 ) = 3 . \Longrightarrow 2\cos(10^{\circ}) - \sin(40^{\circ}) = \sqrt{3}\cos(40^{\circ}) \Longrightarrow \dfrac{2\cos(10^{\circ}) - \sin(40^{\circ})}{\cos(40^{\circ})} = \boxed{\sqrt{3}}.

Pulkit Gupta
Dec 5, 2015

We write sin 40 \sin 40 as 2 sin 30 2\sin 30 sin 40 \sin 40 and then apply 2 sin A 2\sin A sin B \sin B = cos ( A B ) cos ( A + B ) \cos (A-B) - \cos (A+B) .

This simplifies the expression to an easily tack able form.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...