Can you do it geometrically?

Calculus Level 5

You are given two circles . One has a radius 1 and is centered at ( 0 , 1 ) (0, 1) in the Cartesian plane. The other has a radius 2 and is centered at ( 2 , 0 ) (2, 0) . If the area of intersection of the circles is E \mathfrak{E} , then find 1000 E \left \lfloor 1000 \mathfrak{E} \right \rfloor .

Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is 961.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 31, 2016

Yes, it can be solved by geometry.

Let ( 0 , 0 ) (0,0) , ( 0 , 1 ) (0,1) , ( 2 , 0 ) (2,0) , and the point of intersection of the two circles be O O , A A , B B , and P P . The quadrilateral A O B P AOBP is a kite with radii of the two circles as sides. Let B A O = α \angle BAO = \alpha , then P A O = 2 α \angle PAO = 2 \alpha and A B O = β \angle ABO = \beta , then P B O = 2 β \angle PBO = 2 \beta . We note that α = tan 1 2 \alpha = \tan^{-1} 2 and β = tan 1 1 2 \beta = \tan^{-1} \frac 12 .

The area of intersection is given by:

E = Area of radius-1 segment OP + Area of radius-2 segment OP = Area of sector A O P Area of A O P + Area of sector B O P Area of B O P = 1 2 ( α sin α cos α ) + 2 2 ( β sin β cos β ) = ( 1.107148718 0.4 ) + 4 ( 0.463647609 0.4 ) = 0.707148718 + 0.254590436 = 0.961739154 \begin{aligned} \mathfrak E & = \text{Area of radius-1 segment OP} + \text{Area of radius-2 segment OP} \\ & = \text{Area of sector } AOP - \text{Area of } \triangle AOP + \text{Area of sector } BOP - \text{Area of } \triangle BOP \\ & = 1^2 \left(\alpha - \sin \alpha \cos \alpha \right) + 2^2 \left(\beta - \sin \beta \cos \beta \right) \\ & = (1.107148718 - 0.4) + 4(0.463647609-0.4) \\ & = 0.707148718 + 0.254590436 \\ & = 0.961739154 \end{aligned}

1000 E = 961 \implies \lfloor 1000 \mathfrak E \rfloor = \boxed{961}

Tom Engelsman
Nov 27, 2020

Let us take a calculus approach to this area. The circles in question can be modeled as:

x 2 + ( y 1 ) 2 = 1 ; x^2 + (y-1)^2 = 1;

( x 2 ) 2 + y 2 = 4 (x-2)^2 + y^2 = 4

which intersect in the points ( x , y ) = ( 0 , 0 ) ; ( 4 5 , 8 5 ) (x,y) = (0,0); (\frac{4}{5},\frac{8}{5}) . These two points lie along the line y = 2 x y=2x , which allows us to perform the following integration:

A = 0 4 / 5 4 ( x 2 ) 2 2 x d x + 0 8 / 5 1 ( y 1 ) 2 y 2 d y A = \int_{0}^{4/5} \sqrt{4-(x-2)^2} - 2x dx + \int_{0}^{8/5} \sqrt{1-(y-1)^2} - \frac{y}{2} dy ;

or x 2 2 4 ( x 2 ) 2 + 2 arcsin ( x 2 2 ) x 2 0 4 / 5 + y 1 2 1 ( y 1 ) 2 + 1 2 arcsin ( y 1 ) y 2 4 0 8 / 5 0.9617 \frac{x-2}{2}\sqrt{4-(x-2)^2} + 2\arcsin(\frac{x-2}{2}) - x^2 |_{0}^{4/5} + \frac{y-1}{2}\sqrt{1-(y-1)^2} + \frac{1}{2}\arcsin(y-1) - \frac{y^2}{4}|_{0}^{8/5} \approx 0.9617

Thus, 1000 A = 961 . \lfloor 1000A \rfloor = \boxed{961}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...