A calculus problem by Sanad Kadu

Calculus Level 4

Find lim x x x 2 + x + 1 ln ( e x + x ) x \displaystyle \lim_{x\to\infty}x-\sqrt{x^2+x+1}\dfrac {\ln(e^x+x)}{x} .

1 -0.5 -0.8 -0.7 Does Not Exist

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sanad Kadu
May 24, 2018

x 2 + x + 1 = x ( 1 + 1 / x + 1 / x 2 ) 1 2 = x + 1 2 + 1 2 x + o ( x 1 ) \sqrt{x^2+x+1}=x(1+1/x+1/x^2)^\frac12=x+\frac12+\frac1{2x}+o(x^{-1}) ln ( e x + x ) x = ln e x + ln ( 1 + x / e x ) x = 1 + 1 e x + o ( e x ) \frac{\ln(e^x+x)}x=\frac{\ln e^x+\ln (1+x/e^x)}x=1+\frac1{e^x}+o(e^{-x}) x x 2 + x + 1 ln ( e x + x ) x = x x 1 2 1 2 x + o ( x 1 ) 1 2 x-\sqrt{x^2+x+1}\frac {\ln(e^x+x)}{x}=x-x-\frac12-\frac1{2x}+o(x^{-1})\to -\frac12

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...