Can you do this in 1 minute?

Calculus Level 4

0 2 π 5 s i n ( x x ) d x F i n d t h e v a l u e o f t h e a b o v e i n t e g r a l . I f S i s t h e g i v e n v a l u e f i n d 100 S . \int _{ 0 }^{ \frac { 2\pi }{ 5 } }{ sin\left( { x }^{ \left\lfloor x \right\rfloor } \right) } dx\\ Find\quad the\quad value\quad of\quad the\quad above\\ integral.\quad If\quad S\quad is\quad the\quad given\quad value\\ find\quad \left\lfloor 100S \right\rfloor .\\ \\ x r e p r e s e n t s t h e g r e a t e s t i n t e g e r l e s s t h a n o r e q u a l t o x . \left\lfloor x \right\rfloor \quad represents\quad the\quad greatest\quad integer\\ less\quad than\quad or\quad equal\quad to\quad x.


The answer is 107.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aaaaaa Bbbbbb
Sep 5, 2015

The integral can be divided into two components: S = 0 2 π 5 s i n ( x x ) d x = 0 1 s i n ( 1 ) d x + 1 2 π 5 s i n ( x ) d x = 1.072 S=\int_0^{\frac{2\pi}{5}} sin(x^{\lfloor x \rfloor}) dx = \int_0^1 sin(1) dx + \int_1^{\frac{2\pi}{5}} sin(x) dx = \boxed{1.072} 100 S = 107 \lfloor 100S \rfloor = \boxed{107}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...