Can you factorise it?

Algebra Level 2

3 x 2 16 x y + 16 y 2 + 17 x 44 y + 24 3x^2 -16xy + 16y^2 +17x -44y +24

If the expression above can be factorized into ( a 1 x + a 2 y + a 3 ) ( a 4 x + a 5 y + a 6 ) (a_{1}x + a_{2}y + a_{3})(a_{4}x + a_{5}y + a_{6}) with all integer coefficients , what is the highest value of a 1 + a 2 + a 3 + a 4 + a 5 + a 6 a_{1} + a_{2} + a_{3} + a_{4} + a_{5} + a_{6} ?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 15, 2020

Given that ( a 1 x + a 2 y + a 3 ) ( a 4 x + a 5 y + a 6 ) = 3 x 2 16 x y + 16 y 2 + 17 x 44 y + 24 (a_1x + a_2y + a_3)(a_4x + a_5y + a_6) = 3x^2-16xy + 16y^2 + 17x - 44y + 24 , equating the coefficients we have:

{ a 1 a 4 = 3 . . . ( 1 ) a 1 a 5 + a 2 a 4 = 16 . . . ( 2 ) a 2 a 5 = 16 . . . ( 3 ) a 1 a 6 + a 3 a 4 = 17 . . . ( 4 ) a 2 a 6 + a 3 a 5 = 44 . . . ( 5 ) a 3 a 6 = 24 . . . ( 6 ) \begin{cases} \begin{aligned} a_1 a_4 & = 3 & ...(1) \\ a_1a_5 + a_2a_4 & = -16 & ...(2) \\ a_2a_5 & = 16 & ...(3) \\ a_1a_6 + a_3a_4 & = 17 & ...(4) \\ a_2a_6 + a_3a_5 & = -44 & ...(5) \\ a_3a_6 & = 24 &...(6) \end{aligned} \end{cases}

With six equations, we can solve the six unknown a k a_k , but it is very tedious. We can just make some educated guesses.

  • Since ( 1 ) : a 1 a 4 = 3 (1): \ a_1a_4 = 3 , we can assume a 1 = 3 a_1 = 3 and a 4 = 1 a_4 = 1 .
  • Next ( 3 ) : y 2 (3): \ y^2 , a 2 a 5 = 16 a_2 a_5 = 16 . We note that when both a 2 a_2 and a 5 a_5 appear in ( 2 ) (2) and ( 5 ) (5) , the coefficients are negative. Therefore, we can assume a 2 = a 5 = 4 a_2 = a_5 = -4 .
  • Then ( 2 ) : ( 3 ) ( 4 ) + ( 1 ) ( 4 ) = 16 (2):\ (3)(-4)+(1)(-4) = -16 , which is correct.
  • And ( 4 ) (4) and ( 5 ) (5) become:

{ ( 4 ) : 3 a 6 + a 3 = 17 . . . ( 4 a ) ( 5 ) : 4 a 6 4 a 3 = 44 a 6 + a 3 = 11 . . . ( 5 a ) ( 4 a ) ( 5 a ) : 2 a 6 = 6 a 6 = 3 a 3 = 8 \quad \begin{cases} \begin{aligned} (4): \quad \ \ 3a_6 + a_3 & = 17 & ...(4a) \\ (5): \ -4a_6 - 4a_3 & = -44 \\ a_6 + a_3 & = 11 &...(5a) \end{aligned} \end{cases} \implies (4a) - (5a): \ 2a_6 = 6 \implies a_6 = 3 \implies a_3 = 8

Therefore a 1 + a 2 + a 3 + a 4 + a 5 + a 6 = 3 4 + 8 + 1 4 + 3 = 7 a_1+a_2+a_3+a_4+a_5+a_6 = 3-4+8+1-4+3 = \boxed 7 .

Yes mate the whole problem lies on the base that 3 is prime. That gives us the key to this prob..

Eswar Charan Bonda - 1 year, 1 month ago

I believe you have a typo, a 4 = 3 a_4 = 3 should be a 4 = 1 a_4 = 1 .

David Vreken - 1 year, 1 month ago

Log in to reply

Thanks David. I have changed it.

Chew-Seong Cheong - 1 year, 1 month ago
Mahdi Raza
Apr 16, 2020

Expression = 3 x 2 16 x y + 16 y 2 Degree 2 + 17 x 44 y + 24 Degree 1 = ( 3 x 2 12 x y 4 x y + 16 y 2 ) + ( 17 x 44 y + 24 ) = ( 3 x ( x 4 y ) 4 y ( x 4 y ) ) + ( 17 x 44 y + 24 ) = ( 3 x 4 y ) ( x 4 y ) + ( 17 x 44 y + 24 ) ( 3 x 4 y + a 3 ) ( x 4 y + a 6 ) = ( 3 x 4 y ) ( x 4 y ) + ( 17 x 44 y + 24 ) Comparing coefficients a 3 ( x ) + a 6 ( 3 x ) = 17 x a 3 + 3 a 6 = 17 ( 1 ) a 3 ( 4 y ) + a 6 ( 4 y ) = 44 y a 3 + a 6 = 11 ( 2 ) Solving coefficients a 3 = 8 , a 6 = 3 3 x 2 16 x y + 16 y 2 + 17 x 44 y + 24 = ( 3 x 4 y + 8 ) ( x 4 y + 3 ) \begin{aligned} \text{Expression} &= \underbrace{3x^2 -16xy + 16y^2}_{\text{Degree 2}} + \underbrace{17x -44y +24}_{\text{Degree 1}} \\ &= \bigg( 3x^2 -12xy -4xy + 16y^2 \bigg) + \bigg( 17x -44y +24 \bigg) \\ &= \bigg( 3x(x-4y) -4y(x-4y) \bigg) + \bigg( 17x -44y +24 \bigg) \\ &= (3x-4y)(x-4y) + \bigg( 17x -44y +24 \bigg) \\ (3x-4y + a_{3})(x-4y + a_{6}) &= (3x-4y)(x-4y) + \bigg( 17x -44y +24 \bigg) \\ \\ & \text{Comparing coefficients} \\ \\ a_{3}(x) + a_{6}(3x) = 17x &\implies a_{3} + 3a_{6} = 17 \ldots (1) \\ a_{3}(-4y) + a_{6}(-4y) = -44y &\implies a_{3} + a_{6} = 11 \ldots (2) \\ \\ \text{Solving coefficients} &\implies a_{3} = 8, a_{6} = 3 \\ \\ 3x^2 -16xy + 16y^2 +17x -44y +24 &= \boxed{(3x-4y + 8)(x-4y + 3)} \end{aligned}

3 4 + 8 + 1 4 + 3 = 7 3-4+8+1-4+3 = \color{#D61F06}{\boxed{7}}

There's a typo. In the last third expression of your solution. It should be a6=3.

Prakash Arora - 1 year ago

Log in to reply

Ohh, Thanks for pointing it out!

Mahdi Raza - 1 year ago

How do I post an image 😅 I solved the problem but don't know how to post image😅.

You can use the third button when on editing mode.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...