Can You Factorize it?

Consider the following prime factorization :

99899 = a b c × c d c \Large 99899 = \overline{abc} \times \overline{cdc}

where a b c \overline{abc} and c d c \overline{cdc} are both 3 - digit prime numbers, then enter the value of a + b + c + d a + b + c + d .

Bonus : Prove it algebraically .

Source : JMO sample paper (2015)


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishu Jaar
Nov 11, 2017

Let f ( x ) = 9 x 4 + 9 x 3 + 8 x 2 + 9 x + 9 f(x) = 9x^4 + 9x^3 + 8x^2 + 9x + 9 such that f ( 10 ) = 99899 \boxed{f(10) = 99899} .

Now we will factorize f ( x ) \large f(x) as follows f ( x ) = x 2 ( 9 x 2 + 9 x + 8 + 9 x + 9 x 2 ) f(x) = x^2 \left( 9x^2 + 9x + 8 + \dfrac{9}{x} + \dfrac{9}{x^2} \right)

= x 2 [ 9 ( x 2 + 1 x 2 ) + 9 ( x + 1 x ) + 8 ] = x^2 \left[ 9\left(x^2+\dfrac{1}{x^2} \right) + 9\left(x+\dfrac{1}{x} \right) + 8 \right] N o w s e t ( x + 1 x ) = t x 2 + 1 x 2 = t 2 2 (Squaring both sides) Substituting in f(x) and factorising we get : f ( x ) = x 2 [ ( 3 t 2 ) ( 3 t + 5 ) ] f ( x ) = x 2 [ 3 ( x + 1 x ) 2 ] [ 3 ( x + 1 x ) + 5 ] f ( x ) = ( 3 x 2 2 x + 3 ) ( 3 x 2 + 5 x + 3 ) f ( x ) = g ( x ) h ( x ) (Say) N o w 99899 = f ( 10 ) = g ( 10 ) h ( 10 ) = 283 × 353 Now~ set \left(x+\dfrac{1}{x} \right) = t \\ \implies x^2 + \dfrac{1}{x^2} = t^2 - 2 \hspace{1cm} \color{#20A900}{\text{(Squaring both sides)}} \\ \implies \text{Substituting in f(x) and factorising we get :} \\ \implies f(x) = x^2 \left[ \left(3t - 2 \right) \left(3t + 5 \right) \right] \\ \implies f(x) = x^2 \left[ 3\left(x+\dfrac{1}{x} \right) - 2 \right] \left[ 3\left(x + \dfrac{1}{x} \right) + 5 \right] \\ \implies f(x) = \left(3x^2 - 2x +3 \right) \left(3x^2 +5x +3 \right) \\ \implies f(x) = g(x)\cdot h(x) \hspace{1cm} \color{#20A900}{\text{(Say)}} \\ \implies Now ~99899 ~~~=f(10) \\ \hspace{6cm} = g(10)\cdot h(10) \\ \large \hspace{6cm} = \color{#69047E}{\boxed{283 \times 353}}

Hence , a + b + c + d = 18 \large \text{Hence , } \color{#D61F06}{\boxed{a + b + c + d = 18}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...