Evaluate:
∫ 0 2 π ln ( 2 cos x ) d x = c a π b
Find a b c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I just wondered why you only asked for a ...
Log in to reply
Yeah because I cannot state that a and c are coprime integers and asking a + b + c wouldn't be that accurate. Do you have any idea?
Problem Loading...
Note Loading...
Set Loading...
Lets consider the complex notation of cos x = 2 e i x + e − i x
Now our integral transforms to I = ∫ 0 2 π ln ( e i x + e − i x ) d x = ∫ 0 2 π ln ( e i x ( 1 + e − 2 i x ) d x = ∫ 0 2 π ln ( e i x ) d x + ∫ 0 2 π ln ( 1 + e − 2 i x ) d x = I 1 + I 2
Now, I 1 = ∫ 0 2 π ( i x ) d x = [ 2 i x 2 ] 0 2 π = 8 i π 2 = I 1
Consider Taylor Series for ln ( 1 + x ) = x − 2 x 2 + 3 x 3 − 4 x 4 + . . . . . . . . = n = 1 ∑ ∞ n ( − 1 ) n + 1 x n
Now, ln ( 1 + e − 2 i x ) = e − 2 i x − 2 e ( − 2 i x ) 2 + 3 e ( − 2 i x ) 3 − . . . . . . . .
Now, ∫ 0 2 π ln ( 1 + e − 2 i x ) d x = − 2 i 1 [ e − 2 i x − 2 2 e ( − 2 i x ) 2 + 3 2 e ( − 2 i x ) 3 − . . . . . . . ] 0 2 π = [ S ] 0 2 π
Observe, S x = 2 π = − 2 i 1 [ e − i π − 2 2 e − 2 i π + 3 2 e − 3 i π − . . . . . . . . = − 2 i 1 [ − 1 − 2 2 1 + 3 2 − 1 − 4 2 1 + . . . . . . . . . ]
Now S x = 0 = − 2 i 1 [ 1 − 2 2 1 + 3 2 1 − 4 2 1 + . . . . . . . . . ]
We know that, S = S 2 π − S 0 = 1 − i [ 1 2 1 + 3 2 1 + 5 2 1 + . . . . . . . ] = 8 − i π 2 = I 2
I = I 1 + I 2 = 8 ( 0 ) i π 2 = 0
Hence, a = 0