Can you figure this out (4)

Calculus Level 2

Evaluate:

0 π 2 ln ( 2 cos x ) d x = a π b c \large \int_0^{\frac π2} \ln(2\cos x)\ dx = \dfrac {aπ^b}{c}

Find a b c . abc.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Lets consider the complex notation of cos x = e i x + e i x 2 \cos x = \dfrac {e^{ix} + e^{-ix}}{2}

Now our integral transforms to I = 0 π 2 ln ( e i x + e i x ) d x = 0 π 2 ln ( e i x ( 1 + e 2 i x ) d x = 0 π 2 ln ( e i x ) d x + 0 π 2 ln ( 1 + e 2 i x ) d x = I 1 + I 2 I = \displaystyle \int_0^{\frac π2} \ln(e^{ix} + e^{-ix})dx = \displaystyle \int_0^{\frac π2} \ln(e^{ix}(1 + e^{-2ix}) dx = {\color{#20A900}{\displaystyle \int_0^{\frac π2} \ln(e^{ix})dx}} + {\color{#D61F06}{\displaystyle \int_0^{\frac π2} \ln(1+ e^{-2ix}) dx}} = {\color{#20A900}{I_1}} + {\color{#D61F06}{I_2}}

Now, I 1 = 0 π 2 ( i x ) d x = [ i x 2 2 ] 0 π 2 = i π 2 8 = I 1 {\color{#20A900}{I_1 = \displaystyle \int_0^{\frac π2} (ix) dx = [\dfrac {ix^2}{2}]_0^{\frac π2} = \dfrac {iπ^2}{8} = I_1}}

Consider Taylor Series for ln ( 1 + x ) = x x 2 2 + x 3 3 x 4 4 + . . . . . . . . = n = 1 ( 1 ) n + 1 x n n \ln(1 + x) = x - \dfrac {x^2}{2} + \dfrac {x^3}{3} - \dfrac {x^4}{4} + ........= \displaystyle \sum_{n=1}^\infty \dfrac {(-1)^{n+1} x^n}{n}

Now, ln ( 1 + e 2 i x ) = e 2 i x e ( 2 i x ) 2 2 + e ( 2 i x ) 3 3 . . . . . . . . \ln(1+ e^{-2ix}) = e^{-2ix} - \dfrac {e^{(-2ix)2}}{2} + \dfrac {e^{(-2ix)3}}{3} -........

Now, 0 π 2 ln ( 1 + e 2 i x ) d x = 1 2 i [ e 2 i x e ( 2 i x ) 2 2 2 + e ( 2 i x ) 3 3 2 . . . . . . . ] 0 π 2 = [ S ] 0 π 2 {\color{#D61F06}{\displaystyle \int_0^{\frac π2} \ln( 1 + e^{-2ix})dx = \dfrac {1}{-2i} [e^{-2ix} - \dfrac {e^{(-2ix)2}}{2^2} + \dfrac {e^{(-2ix)3}}{3^2} - .......]_0^{\frac π2} = [S]_0^{\frac π2}}}

Observe, S x = π 2 = 1 2 i [ e i π e 2 i π 2 2 + e 3 i π 3 2 . . . . . . . . = 1 2 i [ 1 1 2 2 + 1 3 2 1 4 2 + . . . . . . . . . ] S_{x={\frac π2}} = \dfrac {1}{-2i} [ e^{-iπ} - \dfrac {e^{-2iπ}}{2^2} + \dfrac {e^{-3iπ}}{3^2} - ........= \dfrac {1}{-2i} [ -1 - \dfrac {1}{2^2} + \dfrac {-1}{3^2} - \dfrac {1}{4^2} + .........]

Now S x = 0 = 1 2 i [ 1 1 2 2 + 1 3 2 1 4 2 + . . . . . . . . . ] S_{x=0} = \dfrac {1}{-2i}[ 1 - \dfrac {1}{2^2} + \dfrac {1}{3^2} - \dfrac {1}{4^2} + .........]

We know that, S = S π 2 S 0 = i 1 [ 1 1 2 + 1 3 2 + 1 5 2 + . . . . . . . ] = i π 2 8 = I 2 {\color{#D61F06}{S = S_{\frac π2} - S_0 = \dfrac {-i}{1} [ \dfrac {1}{1^2} + \dfrac {1}{3^2} + \dfrac {1}{5^2} +.......] = \dfrac {-iπ^2}{8} = I_2}}

I = I 1 + I 2 = ( 0 ) i π 2 8 = 0 I = I_1 + I_2 = \dfrac {(0)iπ^2}{8} = 0

Hence, a = 0 a= \boxed{0}

I just wondered why you only asked for a a ...

X X - 2 years, 6 months ago

Log in to reply

Yeah because I cannot state that a a and c c are coprime integers and asking a + b + c a + b + c wouldn't be that accurate. Do you have any idea?

A Former Brilliant Member - 2 years, 6 months ago

Log in to reply

You could ask for a b c abc

X X - 2 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...