Can you find the length of this line?

Geometry Level 3

In the triangle shown above, A B = 12 , B C = 18 \overline{AB}=12,\overline{BC}=18 and A C = 25 , \overline{AC}=25, a semicircle is drawn such that its diameter lies on A C \overline{AC} and it is tangent to A B \overline{AB} at point D D and B C \overline{BC} at point E E . Given that point O O is the center of the semicircle, find the length of A O \overline{AO} .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jon Haussmann
Jan 23, 2018

Right triangles B D O BDO and B E O BEO are congruent, so D B O = E B O \angle DBO = \angle EBO . Hence, B O BO bisects D B E \angle DBE .

Then by angle bisector theorem, A O C O = A B B C = 12 18 = 2 3 , \frac{AO}{CO} = \frac{AB}{BC} = \frac{12}{18} = \frac{2}{3}, so A O = 2 5 A C = 10. AO = \frac{2}{5} \cdot AC = 10.

Hassan Abdulla
Jan 22, 2018

//Apply Cosine Rule for A \angle A and C \angle C Cosine Rule

cos ( A ) = 12 2 + 25 2 18 2 2 × 12 × 25 = 89 120 \cos { \left( \angle A \right) } =\frac { { 12 }^{ 2 }+{ 25 }^{ 2 }-{ 18 }^{ 2 } }{ 2\times 12\times 25 } =\frac { 89 }{ 120 }

cos ( C ) = 18 2 + 25 2 12 2 2 × 18 × 25 = 161 180 \cos { \left( \angle C \right) } =\frac { { 18 }^{ 2 }+{ 25 }^{ 2 }-{ 12 }^{ 2 } }{ 2\times 18\times 25 } =\frac { 161 }{ 180 }

//Apply sin ( θ ) = 1 cos 2 ( θ ) \sin { \left( \theta \right) } =\sqrt { 1-\cos ^{ 2 }{ \left( \theta \right) } }

sin ( A ) = 1 cos 2 ( A ) = 6479 120 \sin { \left( \angle A \right) } =\sqrt { 1-\cos ^{ 2 }{ \left( \angle A \right) } } =\frac { \sqrt { 6479 } }{ 120 }

sin ( C ) = 1 cos 2 ( C ) = 6479 180 \sin { \left( \angle C \right) } =\sqrt { 1-\cos ^{ 2 }{ \left( \angle C \right) } } =\frac { \sqrt { 6479 } }{ 180 }

Now let x=AO \qquad \Rightarrow OC=25-x

A O D \triangle AOD and C O E \triangle COE are right angle //since OE and OD are radius

sin ( A ) = r a d i u s x r a d i u s = x sin ( A ) \sin { \left( \angle A \right) } =\frac { radius }{ x } \Rightarrow radius=x\cdot \sin { \left( \angle A \right) }

sin ( C ) = r a d i u s 25 x r a d i u s = ( 25 x ) sin ( C ) \sin { \left( \angle C \right) } =\frac { radius }{ 25-x } \Rightarrow radius=\left( 25-x \right) \sin { \left( \angle C \right) }

x sin ( A ) = ( 25 x ) sin ( C ) \Rightarrow x\cdot \sin { \left( \angle A \right) } =\left( 25-x \right) \sin { \left( \angle C \right) }

x = 25 sin ( C ) sin ( C ) + sin ( A ) = 25 6479 180 6479 180 + 6479 120 x=\frac { 25\sin { \left( \angle C \right) } }{ \sin { \left( \angle C \right) } +\sin { \left( \angle A \right) } } =\frac { 25\frac { \sqrt { 6479 } }{ 180 } }{ \frac { \sqrt { 6479 } }{ 180 } +\frac { \sqrt { 6479 } }{ 120 } }

multiply denominator and numerator by 180 6479 \frac { 180 }{ \sqrt { 6479 } }

x = 25 5 2 = 10 \Rightarrow x=\frac { 25 }{ \frac { 5 }{ 2 } } =10

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...