Can you find the maximum

Calculus Level 2

x 1 x \Large x^\frac 1x

What is the maximum value of the expression above?


The answer is 1.444667.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hong Jianbo
Jan 19, 2018

Chew-Seong Cheong
Jan 20, 2018

Let y = x 1 x y = x^\frac 1x . Then taking natural logarithm both sides,

ln y = ln x x Differentiate both sides w.r.t. x . 1 y d y d x = 1 ln x x 2 d y d x = 0 , when ln x = 1 x = e 1 y 2 d y d x + 1 y d 2 y d x 2 = 1 2 ( 1 ln x ) x 3 Differentiate both sides w.r.t. x again. 0 + 1 y d 2 y d x 2 x = e = 1 e 3 d 2 y d x 2 x = e < 0 , as y = x 1 x > 0 \begin{aligned} \ln y & = \frac {\ln x}x & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }x. \\ \frac 1y \cdot \frac {dy}{dx} & = \frac {1-\ln x}{x^2} & \small \color{#3D99F6} \implies \frac {dy}{dx} = 0 \text{, when } \ln x = 1 \implies x = e \\ -\frac 1{y^2} \cdot \frac {dy}{dx} + \frac 1y \cdot \frac {d^2y}{dx^2} & = \frac {-1-2(1-\ln x)}{x^3} & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }x \text{ again.} \\ \implies 0 + \frac 1y \cdot \frac {d^2y}{dx^2}\bigg|_{x=e} & = - \frac 1{e^3} & \small \color{#3D99F6} \implies \frac {d^2y}{dx^2}\bigg|_{x=e} < 0 \text{, as }y = x^\frac 1x > 0 \end{aligned}

Therefore, max ( x 1 x ) = e 1 e 1.445 \max \left(x^\frac 1x\right) = e^\frac 1e \approx \boxed{1.445} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...