Can you find the square root of 12345678987654321?

Level 1

What is the square root of 12345678987654321?


The answer is 111111111.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 15, 2019

1 2 No. of 1’s = 1 = 1 1 1 2 No. of 1’s = 2 = 1 2 1 11 1 2 No. of 1’s = 3 = 12 3 21 111 1 2 No. of 1’s = 4 = 123 4 321 111 11 1 2 No. of 1’s = n = 123 n 321 111 111 11 1 2 No. of 1’s = 9 = 12345678 9 87654321 \begin{array} {rccc} & \underbrace{1^2}_{\text{No. of 1's } = \color{#D61F06}1} & = & \color{#D61F06} 1 \\ & \underbrace{11^2}_{\text{No. of 1's }= \color{#D61F06}2} & = & 1{\color{#D61F06}2}1 \\ & \underbrace{111^2}_{\text{No. of 1's }= \color{#D61F06}3} & = & 12{\color{#D61F06}3}21 \\ & \underbrace{1111^2}_{\text{No. of 1's }= \color{#D61F06}4} & = & 123{\color{#D61F06}4}321 \\ \implies & \underbrace{111 \cdots 111^2}_{\text{No. of 1's }= \color{#D61F06}n} & = & 123\cdots {\color{#D61F06}n}\cdots321 \\ \implies & \underbrace{111\ 111\ 111^2}_{\text{No. of 1's }= \color{#D61F06}9} & = & 12345678{\color{#D61F06}9}87654321 \end{array}

Therefore, 12345678987654321 = 111 111 111 \sqrt{12345678987654321} = \boxed{111\ 111\ 111} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...