Can you find the value of x x ?

Algebra Level 2

2 4 x 1 9 4 x 1 2 5 6 x 1 = 62 5 x \large 2^{ 4x-1 }\cdot 9^{ 4x-1 }\cdot 25^{ 6x-1 }=625^{ x }

Solve for x x .


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Modnoiz Antonio
Dec 8, 2015

The answer is here.

2 4 x 1 9 4 x 1 2 5 6 x 1 = 62 5 x ( 2 9 25 ) 4 x 25 2 x 2 9 25 = 25 2 x ( 2 9 25 ) 4 x = 2 9 25 4 x = 1 x = 1 4 = 0.25 2^{ 4x-1 }\cdot 9^{ 4x-1 }\cdot 25^{ 6x-1 }=625^{ x }\\ \frac { { \left( 2\cdot 9\cdot 25 \right) }^{ 4x }\cdot { 25 }^{ 2x } }{ 2\cdot 9\cdot 25 } ={ 25 }^{ 2x }\\ { \left( 2\cdot 9\cdot 25 \right) }^{ 4x }=2\cdot 9\cdot 25\\ \therefore \quad 4x\quad =\quad 1\\ x\quad =\quad \frac { 1 }{ 4 } =0.25

Kay Xspre
Dec 8, 2015

Simplify to ( 62 5 x ) × ( 450 ) 4 x 1 = 62 5 x (625^x)\times(450)^{4x-1} = 625^x , or simply x = 1 + l o g 450 1 4 = 0.25 x = \frac{1+log_{450}1}{4} = 0.25

Edwin Gray
Apr 8, 2019

2^(4x - 1) 9^(4x - 1) 25^(6x - 1) = 625^x, or 18^(4x - 1)*25^(4x - 1) = 1, or 450^(4x - 1) = 1, so 4x - 1 = 0, and x = .25

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...