Can you find this!

Algebra Level 2

If x 2 + 1 x 2 = 171 x^{2} + \dfrac{1}{x^{2}} =171 , what is the positive value of x 1 x x - \dfrac{1}{x} ?

13 13 171 \sqrt{171} 170 170 14 14 None of the above

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let x 1 x = a Squaring on both sides ( x 1 x ) 2 = a 2 x 2 + 1 x 2 2 × x × 1 x = a 2 x 2 + 1 x 2 2 = a 2 [ x 2 + 1 x 2 = 171 ] 171 2 = a 2 a 2 = 169 a = 169 = 13 . \large \displaystyle \text{Let } x - \frac{1}{x} = a\\ \large \displaystyle \text{Squaring on both sides}\\ \large \displaystyle \left(x - \frac{1}{x} \right)^2 = a^2\\ \large \displaystyle \implies x^2 + \frac{1}{x^2} - 2 \times x \times \frac{1}{x} = a^2\\ \large \displaystyle \implies x^2 + \frac{1}{x^2} - 2 = a^2\\ \large \displaystyle \left[\because x^2 + \frac{1}{x^2} = 171 \right]\\ \large \displaystyle \implies 171 - 2 = a^2\\ \large \displaystyle \implies a^2 = 169\\ \large \displaystyle \implies a = \sqrt{169} = \color{#3D99F6}{\boxed{13}}.

The value of x 1 x = 13 . \large \displaystyle \therefore \text{The value of } x - \frac{1}{x} = \color{#D61F06}{\boxed{13}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...