Can you find this infinite sum?

Calculus Level 3

x = 1 54 x 2 ( 1 ) x + 1 5 x 1 = ? \large \sum_{x=1}^\infty \frac{54x^{2} (-1)^{x+1}} {5^{x-1}} = ?


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 27, 2019

Consider the summation:

S = k = 1 ( 1 ) k + 1 k 2 5 k 1 = 1 4 5 + 9 5 2 16 5 3 + 25 5 4 S 5 = 1 5 4 5 2 + 9 5 3 16 5 4 + 25 5 5 S + S 5 = 1 3 5 + 5 5 2 7 5 3 + 9 5 4 1 5 ( S + S 5 ) = 1 5 3 5 2 + 5 5 3 7 5 4 + 9 5 5 ( S + S 5 ) + 1 5 ( S + S 5 ) = 1 2 5 + 2 5 2 2 5 3 + 2 5 4 36 25 S = 1 2 5 ( 1 1 + 1 5 ) = 2 3 S = 25 54 k = 1 54 ( 1 ) k + 1 k 2 5 k 1 = 54 S = 25 \begin{aligned} S & = \sum_{k=1}^\infty \frac {(-1)^{k+1}k^2}{5^{k-1}} \\ & = 1 - \frac 45 + \frac 9{5^2} - \frac {16}{5^3} + \frac {25}{5^4} - \cdots \\ \frac S5 & = \frac 15 - \frac 4{5^2} + \frac 9{5^3} - \frac {16}{5^4} + \frac {25}{5^5} - \cdots \\ S + \frac S5 & = 1 - \frac 35 + \frac 5{5^2} - \frac 7{5^3} + \frac 9{5^4} - \cdots \\ \frac 15 \left(S + \frac S5\right) & = \frac 15 - \frac 3{5^2} + \frac 5{5^3} - \frac 7{5^4} + \frac 9{5^5} - \cdots \\ \left(S + \frac S5\right) + \frac 15 \left(S + \frac S5\right) & =1 - \frac 25 + \frac 2{5^2} - \frac 2{5^3} + \frac 2{5^4} - \cdots \\ \implies \frac {36}{25}S & = 1 - \frac 25 \left(\frac 1{1+\frac 15}\right) = \frac 23 \\ S & = \frac {25}{54} \\ \sum_{k=1}^\infty \frac {54(-1)^{k+1}k^2}{5^{k-1}} & = 54 S = \boxed{25} \end{aligned}

confirmed by wolfram

Kyle T - 2 years, 2 months ago

Log in to reply

Yes, I also checked with Wolfram Alpha.

Chew-Seong Cheong - 2 years, 2 months ago
Pi Han Goh
Mar 28, 2019

Consider the infinite series x = 1 a x = a 1 a \displaystyle \sum_{x=1}^\infty a^x = \dfrac a{1-a} for a < 1 |a| < 1 .

Differentiating with respect to a a gives

x = 1 x a x 1 = 1 ( 1 a ) 2 . \displaystyle \sum_{x=1}^\infty x \cdot a^{x-1} = \dfrac 1{(1-a)^2}.

Multiplying it by a a , we have

x = 1 x a x = a ( 1 a ) 2 . \displaystyle \sum_{x=1}^\infty x \cdot a^x = \dfrac a{(1-a)^2}.

Differentiating with respect to a a again gives

x = 1 x 2 a x 1 = a + 1 ( 1 a ) 3 . \displaystyle \sum_{x=1}^\infty x^2 \cdot a^{x-1} = \dfrac {a+1}{(1-a)^3}.

Multiplying it by a a , we have

x = 1 x 2 a x 1 = a ( a + 1 ) ( 1 a ) 3 . \displaystyle \sum_{x=1}^\infty x^2 \cdot a^{x-1} = \dfrac {a(a+1)}{(1-a)^3}.

The series in question is equal to ( 54 5 1 ) x = 1 x 2 a x (54\cdot 5 \cdot -1)\displaystyle \sum_{x=1}^\infty x^2 a^x , where a = 1 5 a = -\frac15 . Upon substitution, we have the answer of 25 \boxed{25} .

Exactly the same approach!!!

Aaghaz Mahajan - 2 years, 2 months ago

Log in to reply

Here's another way to solve this:

x 2 = x ( x 1 ) + x x^2 = x(x-1) + x .

The series in question can be expressed as B ( x = 1 x ( x 1 ) a x 2 ) + C ( x = 1 x a x 1 ) \displaystyle B \left ( \sum_{x=1}^\infty x(x-1) a^{x-2}\right) + C \cdot \left( \sum_{x=1}^\infty x a^{x-1} \right) for constants B B and C C to be determined.

Can you figure out the rest?

Pi Han Goh - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...