One of the crown jewels of modern geometry

Geometry Level 5

A B C \triangle ABC is a 13-14-15 triangle. P P is chosen so that the sum, P E 2 + P F 2 + P D 2 PE^2 + PF^2 + PD^2 , is minimized. Express A F AF as a b \dfrac{a}{b} where a a and b b are coprime positive integers, and submit a + b a+b .


The answer is 1968.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

We can place A B C \triangle ABC on a coordinate system, with A ( 5 , 0 ) A\left( -5,0 \right) , B ( 9 , 0 ) B\left( 9,0 \right) and C ( 0 , 12 ) C\left( 0,12 \right) . Then, we have the equations of the lines on which the sides of the triangle are:

A B : y = 0 , A C : 12 x 5 y + 60 = 0 , B C : 4 x + 3 y 36 = 0 AB:\ y=0, \ \ \ \ \ \text{ }AC: \ 12x-5y+60=0, \ \ \ \ \ \text{ }BC: \ 4x+3y-36=0 If point P P has coordinates ( x , y ) \left( x,y \right) , using the distance between a point and a line formula ,

P D 2 + P E 2 + P F 2 = ( 12 x 5 y + 60 ) 2 13 2 + ( 4 x + 3 y 36 ) 2 5 2 + y 2 f ( x , y ) P{{D}^{2}}+P{{E}^{2}}+P{{F}^{2}}=\dfrac{{{\left( 12x-5y+60 \right)}^{2}}}{{{13}^{2}}}+\dfrac{{{\left( 4x+3y-36 \right)}^{2}}}{{{5}^{2}}}+{{y}^{2}}\coloneqq f\left( x,y \right) Taking partial derivatives,

f x ( x , y ) = 32 ( 394 x + 33 ( y 12 ) ) 4225 f y ( x , y ) = 2 ( 25752 + 528 x + 6371 y ) 4225 \begin{aligned} & {{f}_{x}}\left( x,y \right)=\frac{32\left( 394x+33\left( y-12 \right) \right)}{4225} \\ & {{f}_{y}}\left( x,y \right)=\frac{2\left( -25752+528x+6371y \right)}{4225} \\ \end{aligned} we find the critical numbers:

f x ( x , y ) = 0 f y ( x , y ) = 0 } ( x , y ) = ( 198 295 , 1176 295 ) \left. \begin{matrix} {{f}_{x}}\left( x,y \right)=0 \\ {{f}_{y}}\left( x,y \right)=0 \\ \end{matrix} \right\}\Leftrightarrow \left( x,y \right)=\left( \dfrac{198}{295},\dfrac{1176}{295} \right) Performing the second partials test we see that we have a minimum, hence these are the coordinates of point P P . Consequently, we get F ( 198 295 , 0 ) F\left( \dfrac{198}{295},0 \right) and A F = 5 + 198 295 = 1673 295 AF=5+\frac{198}{295}=\frac{1673}{295} For the answer, a = 1673 a=1673 , b = 295 b=295 , thus a + b = 1968 a+b=\boxed{1968} .

@Fletcher Mattox - Did I miss the jewel?

Thanos Petropoulos - 5 months ago

@Thanos Petropoulos I am so glad you asked! Did you notice that P P is the Symmedian point, which Ross Honsberger describes as a crown jewel of modern geometry in his classic "Episodes in Nineteenth and Twentieth Century Euclidean Geometry".

Fletcher Mattox - 5 months ago

Log in to reply

Thank you very much for pointing out this property of the symmedian point (easy to prove with the identity Lemoin used). I hadn't noticed this nice exercise in the Episodes. Today I learned something new for this jewel.

Thanos Petropoulos - 5 months ago
Chew-Seong Cheong
Jan 10, 2021

Let P E = h a PE = h_a , P D = h b PD=h_b , and P F = h c PF=h_c . Then the area of A B C \triangle ABC is given by A = a h a + b h b + c h c 2 A = \dfrac {ah_a+bh_b+ch_c}2 , where a a , b b , and c c are the side lengths opposite angles A A , B B , and C C respectively (not to be confused with answer expression a b \dfrac ab ). In this case, 13 h b + 14 h c + 15 h a = 168 13h_b+14h_c+15h_a = 168 . By Cauchy-Schwarz inequality , we have:

( 13 h b + 14 h c + 15 h a ) 2 ( 1 3 2 + 1 4 2 + 1 5 2 ) ( h a 2 + h b 2 + h c 2 ) h a 2 + h b 2 + h c 2 16 8 2 1 3 2 + 1 4 2 + 1 5 2 \begin{aligned} (13h_b+14h_c+15h_a)^2 & \le (13^2 + 14^2 + 15^2) (h_a^2+h_b^2+h_c^2) \\ \implies h_a^2+h_b^2+h_c^2 & \ge \frac {168^2}{13^2 + 14^2 + 15^2} \end{aligned}

And equality occurs when h b 13 = h c 14 = h a 15 \dfrac {h_b}{13} = \dfrac {h_c}{14} = \dfrac {h_a}{15} or h a = 252 59 h_a = \dfrac {252}{59} , h b = 1092 295 h_b = \dfrac {1092}{295} , and h c = 1176 295 h_c = \dfrac {1176}{295} . We also note that:

A F = 5 12 ( h c + 5 13 h b ) + 12 13 h b = 1673 295 AF = \frac 5{12}\left(h_c + \frac 5{13}h_b\right) + \frac {12}{13} h_b = \frac {1673}{295}

Therefore the required answer is 1673 + 295 = 1968 1673+295 = \boxed{1968} .

David Vreken
Jan 12, 2021

Place the points so that they are at A ( 0 , 0 ) A(0, 0) , B ( 14 , 0 ) B(14, 0) , C ( 5 , 12 ) C(5, 12) , and P ( p , q ) P(p, q) .

Then A C AC is on the line 12 x 5 y = 0 12x - 5y = 0 and C B CB is on the line 4 x + 3 y 56 = 0 4x + 3y - 56 = 0 , and by the distance from a point to a line equation , P D 2 = ( 12 p 5 q 13 ) 2 PD^2 = \bigg(\cfrac{12p - 5q}{13}\bigg)^2 , P E 2 = ( 4 p + 3 q 56 5 ) 2 PE^2 = \bigg(\cfrac{4p + 3q - 56}{5}\bigg)^2 , and P F 2 = q 2 PF^2 = q^2 . That means:

P E 2 + P F 2 + P D 2 PE^2 + PF^2 + PD^2

= ( 4 p + 3 q 56 5 ) 2 + q 2 + ( 12 p 5 q 13 ) 2 = \bigg(\cfrac{4p + 3q - 56}{5}\bigg)^2 + q^2 + \bigg(\cfrac{12p - 5q}{13}\bigg)^2

= 6304 4225 p 2 + 1056 4225 p q 448 25 p + 6371 4225 q 2 336 25 q + 3136 25 = \cfrac{6304}{4225}p^2 + \cfrac{1056}{4225}pq - \cfrac{448}{25}p + \cfrac{6371}{4225}q^2 - \cfrac{336}{25}q + \cfrac{3136}{25}

= 8 832325 ( 394 p + 33 q 2366 ) 2 + 1 58115 ( 295 q 1176 ) 2 + 14112 295 = \cfrac{8}{832325}(394p + 33q - 2366)^2 + \cfrac{1}{58115}(295q - 1176)^2 + \cfrac{14112}{295}

which has a minimum of 14112 295 \cfrac{14112}{295} when 394 p + 33 q 2366 = 0 394p + 33q - 2366 = 0 and 295 q 1176 = 0 295q - 1176 = 0 .

These two equations solve to p = 1673 295 p = \cfrac{1673}{295} and q = 1176 295 q = \cfrac{1176}{295} .

Therefore, A F = p = 1673 295 AF = p = \cfrac{1673}{295} , so a = 1673 a = 1673 , b = 295 b = 295 , and a + b = 1968 a + b = \boxed{1968} .

ChengYiin Ong
Jan 18, 2021

By Lagrange's Identity , we have ( a 2 + b 2 + c 2 ) ( P E 2 + P F 2 + P D 2 ) = ( a P E + b P F + c P D ) 2 + ( a P F b P E ) 2 + ( a P D c P E ) 2 + ( b P D c P F ) 2 . (a^2+b^2+c^2)(PE^2+PF^2+PD^2)=(a\cdot PE+b\cdot PF+c\cdot PD)^2+(a\cdot PF-b\cdot PE)^2+(a\cdot PD-c\cdot PE)^2+(b\cdot PD-c\cdot PF)^2. Since the quantities a 2 + b 2 + c 2 a^2+b^2+c^2 and a P E + b P F + c P D a\cdot PE+b\cdot PF+c\cdot PD (the latter is twice the area of Δ A B C \Delta ABC ) are fixed, to minimize P E 2 + P F 2 + P D 2 PE^2+PF^2+PD^2 , we must have P E k = P F b = P D c = k \frac{PE}{k}=\frac{PF}{b}=\frac{PD}{c}=k where k k is some constant.

Therefore, we have k = 2 A Δ A B C a 2 + b 2 + c 2 = 84 295 . k=\frac{2 A_{\Delta ABC}}{a^2+b^2+c^2}=\frac{84}{295}. Now, set up a cartesian coordinate system where A ( 0 , 0 ) , B ( 14 , 0 ) , C ( 5 , 12 ) A(0,0), B(14,0), C(5,12) are the vertices of the triangle. Let ( x , y ) (x,y) be the coordinate of P P , we need to locate the x x -coordinate which is the length A F AF . The line A C AC is given by the equation A C : 5 y 12 x = 0 AC: 5y-12x=0 so the distance from point P P to line A C AC is 5 y 12 x 13 = k 13 = 1092 295 \frac{|5y-12x|}{13}=k\cdot 13=\frac{1092}{295} but we know that y = k 14 = 1176 195 y=k\cdot 14=\frac{1176}{195} , substituting it back yields x = 1673 295 ( x > 0 ) . \boxed{x=\frac{1673}{295}} \ \ (x>0).

Nice approach!

Fletcher Mattox - 4 months, 3 weeks ago
Hosam Hajjir
Jan 10, 2021

Let P = ( x , y ) P = (x, y)

The sum P F 2 + P E 2 + P D 2 = ( P A u 1 ) 2 + ( P B u 2 ) 2 + ( P C u 3 ) 2 = ( P A ) T u 1 u 1 T ( P A ) + ( P B ) T u 2 u 2 T + ( P C ) T u 3 u 3 T ( P C ) PF^2 + PE^2 + PD^2 = (PA \cdot u_1)^2 + (PB \cdot u_2)^2 + (PC \cdot u_3)^2 = (P - A)^T u_1 u_1^T (P - A) + (P - B)^T u_2 u_2^T + (P - C)^T u_3 u_3^T (P - C)

where u 1 , u 2 , u 3 u_1 , u_2, u_3 are unit vectors orthogonal to A B , B C , C A AB, BC, CA respectively.

Thus u 1 = ( 0 , 1 ) , u 2 = ( 4 5 , 3 5 ) , u 3 = ( 12 13 , 5 13 ) u_1 = (0, 1) , u_2 = (\frac{4}{5}, \frac{3}{5}) , u_3 = ( \frac{12}{13}, -\frac{5}{13} )

The expression for the sum of the squared distances can be further simplifed as follows

P F 2 + P E 2 + P D 2 = P T Q P + b T P + c = f ( P ) PF^2 + PE^2 + PD^2 = P^T Q P + b^T P + c = f(P)

where Q = u 1 u 1 T + u 2 u 2 T + u 3 u 3 T , b = 2 ( u 1 u 1 T A + u 2 u 2 T B + u 3 u 3 T C ) , c = A T u 1 u 1 T A + B T u 2 u 2 T B + C T u 3 u 3 T C Q = u_1 u_1^T + u_2 u_2^T + u_3 u_3^T , b = - 2 ( u_1 u_1^T A + u_2 u_2^T B + u_3 u_3^T C ), c = A^T u_1 u_1^T A + B^T u_2 u_2^T B + C^T u_3 u_3^T C

Since u 1 u 1 T , u 2 u 2 T , u 3 u 3 T u_1 u_1^T, u_2 u_2^T , u_3 u_3^T are positive semi-definite, and the vectors u 1 , u 2 , u 3 u_1 , u_2 , u_3 are not collinear, then Q Q is positive definite, then our objective function f ( P ) f(P) attains its minimum at P = 1 2 Q 1 b P^* = -\dfrac{1}{2} Q^{-1} b . This is easy to show by completing the square.

The rest is numerical computations, which are as follows:

First, we have A = ( 0 , 0 ) , B = ( 14 , 0 ) , C = ( 5 , 12 ) A = (0, 0) , B = (14, 0), C = (5, 12)

Secondly,

u 1 u 1 T = [ 0 0 0 1 ] u_1 u_1^T = \begin{bmatrix} 0 && 0 \\ 0 && 1 \end{bmatrix}

u 2 u 2 T = 1 25 [ 16 12 12 9 ] u_2 u_2^T =\dfrac{1}{25} \begin{bmatrix} 16 && 12 \\ 12 && 9 \end{bmatrix}

u 3 u 3 T = 1 169 [ 144 60 60 25 ] u_3 u_3^T = \dfrac{1}{169} \begin{bmatrix} 144 && -60 \\ -60 && 25 \end{bmatrix}

Therefore,

Q = 1 4225 [ 6304 528 528 6371 ] Q = \dfrac{1}{4225} \displaystyle \begin{bmatrix} 6304 && 528 \\ 528 && 6371 \end{bmatrix}

b = ( 2 ) ( 224 25 , 168 25 ) b =(-2) (\dfrac{224}{25} , \dfrac{168}{25} )

Hence,

Q 1 = 1 9440 [ 6371 528 528 6304 ] Q^{-1} = \dfrac{1}{9440} \displaystyle \begin{bmatrix} 6371 && -528 \\ -528 && 6304 \end{bmatrix}

And,

P = 1 2 Q 1 b = ( 1673 295 , 1176 295 ) P^{*} = -\dfrac{1}{2} Q^{-1} b = (\dfrac{1673}{295} , \dfrac{1176}{295} )

Hence the required distance A F = 1673 295 AF = \dfrac{1673}{295} , and therefore the answer is 1673 + 295 = 1968 1673 + 295 = \boxed{1968} .

K T
Jan 17, 2021

Looking at the picture, it is clear that fixing the distances AD and BE will uniquely determine the location of point P, which is at the intersection.

Define A D = r , B E = s , D P = t , E P = u , F P = y , A F = x AD=r, BE=s, DP=t, EP=u, FP=y, AF=x The outline of this solution is

  • establish the angles
  • to express t, u and y in terms of r and s
  • find r and s by setting d ( u 2 + t 2 + y 2 ) / d r d(u^2+t^2+y^2)/dr and d ( u 2 + t 2 + y 2 ) / d s d(u^2+t^2+y^2)/ds to 0
  • find AF

Establish the angles

Let the interior angles at A , B , C A, B, C be α , β , γ α,β,γ respectively

Apply the cosine rule: cos α = 1 3 2 + 1 4 2 1 5 2 2 13 14 = 140 364 = 5 13 \cos α = \frac{13^2+14^2-15^2}{2\cdot 13 \cdot 14}=\frac{140}{364}=\frac{5}{13} ; sin α = 1 cos 2 α = 12 13 \sin α = \sqrt{1-\cos^2α}= \frac{12}{13} This way we get

cos α = 5 13 \cos α = \frac{5}{13} sin α = 12 13 \sin α = \frac{12}{13} α 67.38 ° α \approx 67.38°
cos β = 3 5 \cos β = \frac{3}{5} sin β = 4 5 \sin β = \frac{4}{5} β 51.13 ° β \approx 51.13°
cos γ = 33 65 \cos γ = \frac{33}{65} sin γ = 56 65 \sin γ = \frac{56}{65} γ 59.49 ° γ \approx 59.49°

Express t, u and y in terms of r and s

Setting the origin in A, use the sine and cosine values to express coordinates in terms of r,s,t and u: D = ( 5 13 r , 12 13 r ) D=(\frac{5}{13}r,\frac{12}{13}r) E = ( 14 3 5 s , 4 5 s ) E=(14-\frac{3}{5}s,\frac{4}{5}s) P = ( x , y ) = ( 5 r + 12 t 13 , 12 r 5 t 13 ) = ( 14 3 s + 4 u 5 , 4 s 3 u 5 ) P=(x,y)=(\frac{5r+12t}{13}, \frac{12r-5t}{13})=(14-\frac{3s+4u}{5},\frac{4s-3u}{5})

Using the two expressions for x and the two expressions for y, we can eliminate u and t. 65 x = 25 r + 60 t = 910 39 s 52 u 65x=25r+60t=910-39s-52u 65 y = 60 r 25 t = 52 s 39 u 65y=60r-25t=52s-39u Combine these to express t and u in terms of r and s: t = 546 + 33 r 65 s 56 , u = 350 65 r + 33 s 56 and y = 4 s 3 u 5 = 210 + 39 r + 25 s 56 t= \frac{546+33r-65s}{56}, u=\frac{350-65r+33s}{56} \text{ and } y=\frac{4s-3u}{5}=\frac{-210+39r+25s}{56}

Find r and s

P is such that it minimizes Q ( r , s ) = t 2 + u 2 + y 2 = ( ( 546 + 33 r 65 s ) 2 + ( 350 65 r + 33 s ) 2 + ( 210 + 39 r + 25 s ) 2 ) / 5 6 2 Q(r,s)= t^2+u^2+y^2 = ( (546+33r-65s)^2+(350-65r+33s)^2+(-210+39r+25s)^2)/56^2 5 6 2 Q = 464716 + 6835 r 2 + 5939 s 2 + 25844 r 58380 s 6630 r s 56^2Q = 464716+6835r^2+5939s^2+-25844r -58380s -6630rs

d Q / d r = 0 6835 r 12922 3315 s = 0 dQ/dr=0 \Rightarrow 6835r-12922 -3315s = 0 d Q / d s = 0 5939 s 29190 3315 r = 0 dQ/ds=0 \Rightarrow 5939s -29190 -3315r=0 these solve to r = 1729 / 295 , s = 483 / 59 r=1729/295, s= 483/59

Find AF

t = 546 + 33 × 1729 / 295 65 × 483 / 59 56 = 1092 295 t= \frac{546+33× 1729/295 -65×483/59}{56}= \frac{1092}{295} u = 350 65 × 1729 / 295 + 33 × 483 / 59 56 = 252 59 u=\frac{350-65×1729/295+33× 483/59}{56} = \frac{252}{59} y = 210 + 39 × 1729 / 295 + 25 × 483 / 59 56 = 1176 295 y=\frac{-210+39×1729/295+25× 483/59}{56}= \frac{1176}{295} x = 5 × 1729 / 295 + 12 × 1092 / 295 13 = 1673 295 x=\frac{5×1729/295 +12× 1092/295}{13}= \frac{1673}{295} Since A F = x AF=x we should submit 1673 + 295 = 1968 1673+295=\boxed{1968}

The minimum value for t 2 + u 2 + y 2 = 14112 295 t^2+u^2+y^2= \frac{14112}{295}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...