Odd Series

Calculus Level 4

Find the value of ( 1 + 1 x ) ! \left( \left\lceil 1+\dfrac{1}{x} \right\rceil \right) ! if

x = 1 3 ! + 2 5 ! + 3 7 ! + 4 9 ! + . x = \frac{1}{3!}+\frac{2}{5!}+\frac{3}{7!}+\frac{4}{9!}+\ldots.


The answer is 5040.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sujoy Roy
Jan 19, 2016

x = 1 3 ! + 2 5 ! + 3 7 ! + 4 9 ! + x=\frac{1}{3!}+\frac{2}{5!}+\frac{3}{7!}+\frac{4}{9!}+\ldots

or, 2 x = 3 1 3 ! + 5 1 5 ! + 7 1 7 ! + 9 1 9 ! + 2x=\frac{3-1}{3!}+\frac{5-1}{5!}+\frac{7-1}{7!}+\frac{9-1}{9!}+\ldots

or, 2 x = 1 2 ! 1 3 ! + 1 4 ! 1 5 ! + 1 6 ! 1 7 ! + 1 8 ! 1 9 ! + 2x=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+\frac{1}{6!}-\frac{1}{7!}+\frac{1}{8!}-\frac{1}{9!}+\ldots

or, x = 1 2 e x=\frac{1}{2e} .

Now, ( 1 + 1 x ) ! = 7 ! = 5040 \left(\lceil{1+\frac{1}{x}}\rceil\right)! = 7! = \boxed{5040} .

Fantastic couldn't imagine that

Ankit Roy - 5 years, 4 months ago
Jake Lai
Jan 18, 2016

Consider the Maclaurin series of sinh t \sinh t :

sinh t = n = 0 t 2 n + 1 ( 2 n + 1 ) ! . \sinh t = \sum_{n=0}^\infty \frac{t^{2n+1}}{(2n+1)!}.

Substituting t = u t = \sqrt{u} and diving both sides by v \sqrt{v} , we obtain

sinh u u = n = 0 u n ( 2 n + 1 ) ! . \frac{\sinh \sqrt{u}}{\sqrt{u}} = \sum_{n=0}^\infty \frac{u^n}{(2n+1)!}.

Differentiating wrt u at u = 1 gives us

d d u sinh u u u = 1 = n = 0 n u n 1 ( 2 n + 1 ) ! u = 1 = n = 0 n ( 2 n + 1 ) ! . \left. \frac{d}{du} \frac{\sinh \sqrt{u}}{\sqrt{u}} \right|_{u=1} = \left. \sum_{n=0}^\infty \frac{nu^{n-1}}{(2n+1)!} \right|_{u=1} = \sum_{n=0}^\infty \frac{n}{(2n+1)!}.

The RHS is our desired sum (since the n = 0 term is 0), which leaves us to handle the LHS. A quick calculation yields

d d u sinh u u u = 1 = cosh 1 sinh 1 2 = 1 2 e . \left. \frac{d}{du} \frac{\sinh \sqrt{u}}{\sqrt{u}} \right|_{u=1} = \frac{\cosh 1 - \sinh 1}{2} = \frac{1}{2e}.

Thus,

x = n = 0 n ( 2 n + 1 ) ! = 1 2 e x = \sum_{n=0}^\infty \frac{n}{(2n+1)!} = \boxed{\frac{1}{2e}}

and so ( 1 + 1 x ) ! = 7 ! = 5040 \left( \left\lceil 1+\dfrac{1}{x} \right\rceil \right) ! = 7! = \boxed{5040} .

Lucas Tell Marchi
Jan 22, 2016

First, let's find x x . It is the sum

x = n = 1 n ( 2 n + 1 ) ! x = \sum_{n=1}^{\infty} \frac{n}{(2n+1)!}

Now, if you remember your calculus lessons:

sinh ( x ) = n = 0 x 2 n + 1 ( 2 n + 1 ) ! \sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}

Which is easy to differentiate:

d d x sinh ( x ) = n = 0 ( 2 n + 1 ) x 2 n ( 2 n + 1 ) ! = cosh ( x ) \frac{\mathrm{d} }{\mathrm{d} x} \sinh(x) = \sum_{n=0}^{\infty} \frac{(2n+1) x^{2n}}{(2n+1)!} = \cosh(x)

And therefore

cosh ( 1 ) = n = 0 o r 1 2 n ( 2 n + 1 ) + n = 0 1 ( 2 n + 1 ) ! = 2 x + sinh ( 1 ) \cosh(1) = \sum_{n= 0 or 1}^{\infty} \frac{2n}{(2n+1)} + \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} = 2x + \sinh(1)

So 2 x = e + e 1 ( e e 1 ) = e 1 2x = e + e^{-1} - (e - e^{-1}) = e^{-1} or 1 / x = 2 e 1/x = 2e . Therefore

( 1 + 1 x ) ! = ( 1 + 2 e ) ! = 7 ! = 5040 \left( \left\lceil 1 + \frac{1}{x} \right\rceil \right)! = \left( \left\lceil 1 + 2e \right\rceil \right)! = 7! = 5040

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...