Can you generalise it

Calculus Level 5

Define I ( a ) = 0 sin ( a 2 x 2 ) sin ( 1 x 2 ) × 1 x 2 d x \displaystyle I(a)= \int_{0}^{\infty} \sin(a^{2}x^{2}) \sin(\dfrac{1}{x^{2}}) \times \dfrac{1}{x^{2}} dx

If the above expression can also be written in the form

I ( a ) = π A ( e B a + sin ( C a ) cos ( D a ) ) \displaystyle I(a)=\sqrt{\dfrac{\pi}{A}} (e^{Ba}+\sin(Ca)-\cos(Da)) , where A , B , C A,B,C and D D are all integers. Find A + B + C + D A+B+C+D

Note: a a is a positive number.

Inspiration:)


The answer is 34.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

This is how I did this.

First, consider I ( a ) = 2 a 0 cos ( a 2 x 2 ) sin ( 1 x 2 ) d x \displaystyle I'(a)=2a \int_{0}^{\infty} \cos(a^{2}x^{2})\sin(\dfrac{1}{x^{2}})dx

Next, we let x = u a \displaystyle x=\dfrac{u}{\sqrt{a}} (This is where we need a a to be positive and also where the symmetry a > a a->-a breaks.)

I ( a ) = 2 a 0 cos ( a x 2 ) sin ( a x 2 ) d x \displaystyle I'(a)=2\sqrt{a} \int_{0}^{\infty} \cos(ax^{2})\sin(\dfrac{a}{x^{2}})dx (Note that we also change a dummy variable from u u to x x at this step.)

Now, the idea is the sine and the cosine will split into a sum of 2 functions, one is symmetric under x > 1 x \displaystyle x->\dfrac{1}{x} and the other is antisymmetric, in a sense that f ( x ) = " " f ( 1 x ) \displaystyle f(x)="-"f(\dfrac{1}{x}) , so, we need something that is invariant under the change of variable x > 1 x \displaystyle x->\dfrac{1}{x}

Consider, J ( a ) = 0 cos ( a 2 x 2 ) sin ( 1 x 2 ) 1 x 2 d x \displaystyle J(a)=\int_{0}^{\infty} \cos(a^{2}x^{2})\sin(\dfrac{1}{x^{2}})\dfrac{1}{x^{2}}dx

If we let x = u a \displaystyle x=\dfrac{u}{\sqrt{a}} , we get

J ( a ) = a 0 cos ( a x 2 ) sin ( a x 2 ) 1 x 2 d x \displaystyle J(a)=\sqrt{a} \int_{0}^{\infty} \cos(ax^{2})\sin(\dfrac{a}{x^{2}})\dfrac{1}{x^{2}}dx

I ( a ) 2 a + J ( a ) a = 1 2 0 ( sin ( a x 2 + a x 2 ) + sin ( a x 2 a x 2 ) ) ( 1 + 1 x 2 ) d x \displaystyle \dfrac{I'(a)}{2\sqrt{a}}+\dfrac{J(a)}{\sqrt{a}}=\dfrac{1}{2}\int_{0}^{\infty} \left(\sin(ax^{2}+\dfrac{a}{x^{2}})+\sin(ax^{2}-\dfrac{a}{x^{2}}) \right) \left(1+\dfrac{1}{x^{2}} \right)dx

Now, the second term on the last equality is antisymmetric under x > 1 x \displaystyle x->\dfrac{1}{x} and so, vanishes and ( 1 + 1 x 2 ) d x = d ( 1 1 x ) \displaystyle (1+\dfrac{1}{x^{2}})dx=d(1-\dfrac{1}{x}) , so, the first term is π 2 a ( sin ( 2 a ) + cos ( 2 a ) ) \displaystyle \sqrt{\dfrac{\pi}{2a}}(\sin(2a)+\cos(2a))

Next, I claim that J ( a ) = 2 I ( a ) \displaystyle J'(a)=-2I(a) and hence, we arrive at

J " ( a ) 4 J ( a ) = 2 π ( sin ( 2 a ) + cos ( 2 a ) ) \displaystyle J"(a)-4J(a)=-\sqrt{2\pi}(\sin(2a)+\cos(2a)) this equation is solved by the usual method and we get

J ( a ) = A sinh ( 2 a ) + B cosh ( 2 a ) + π 32 ( sin ( 2 a ) + cos ( 2 a ) ) \displaystyle J(a)=A\sinh(2a)+B\cosh(2a)+\sqrt{\dfrac{\pi}{32}}(\sin(2a)+\cos(2a)) and since J ( a ) / a > 0 J'(a)/a->0 as a > 0 a->0 so, we get J ( a ) = π 32 ( e 2 a + ( sin ( 2 a ) + cos ( 2 a ) ) ) J(a)=\sqrt{\dfrac{\pi}{32}}(e^{-2a}+(\sin(2a)+\cos(2a))) and since I ( a ) = 1 2 J ( a ) = π 32 ( e 2 a + sin ( 2 a ) cos ( 2 a ) ) ) I(a)=-\dfrac{1}{2} J'(a)=\sqrt{\dfrac{\pi}{32}}(e^{-2a}+\sin(2a)-\cos(2a)))

So, A = 32 , B = 2 , C = D = 2 \displaystyle A=32,B=-2,C=D=2 and A + B + C + D = 34 A+B+C+D=\boxed{34}

Now, we need to prove that J ( a ) = 2 I ( a ) \displaystyle J'(a)=-2I(a)

J ( a ) = 2 a 0 sin ( a 2 x 2 ) sin ( 1 x 2 ) d x \displaystyle J'(a)=-2a\int_{0}^{\infty} \sin(a^{2}x^{2})\sin(\dfrac{1}{x^{2}})dx

By changing x > 1 a u \displaystyle x->\dfrac{1}{au} , we get the required result.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...