Can you generalize this!

Calculus Level 4

Let f ( x ) = n = 1 ( 1 i = 1 x ( n + i ) ) \displaystyle f(x) = \sum_{n=1}^\infty \left( \frac1{\displaystyle \prod_{i=1}^x (n+i)}\right) . Evaluate the limit lim x { ( x + 1 ) ! f ( x ) \displaystyle \lim_{x\to\infty} \{(x+1)!{f(x)} .

SELF MADE!


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nakul Neeraje
Feb 5, 2019

I think in the limit asked, f(x) should be in the numerator

@Rudresh Tomar I think your answer is wrong. When I solved (which might be wrong) I got \infty

We can write f ( x ) = n = 1 n ! ( n + x ) ! = 1 ( 1 + x ) ! × ( 1 + 2 ! ( x + 2 ) + 3 ! ( x + 3 ) ( x + 2 ) + 4 ! ( x + 4 ) ( x + 3 ) ( x + 2 ) + . . . . . . . ) f(x) = \displaystyle \sum _{n=1}^\infty \dfrac {n! }{(n+x)!} = \dfrac {1}{(1+x)!} \times \begin{pmatrix} 1 + \dfrac {2!}{(x+2)} + \dfrac {3!}{(x+3)(x+2)} + \dfrac {4!}{(x+4)(x+3)(x+2)} + .......\end{pmatrix}

Now we take your limit L = lim x ( x + 1 ) ! f ( x ) L = \displaystyle \lim_{x\rightarrow \infty} \dfrac {(x+1)!}{f(x)}

On a bit simplification you limit turns out L = lim x ( ( x + 1 ) ! ) 2 ( 1 + 2 ! ( x + 2 ) + 3 ! ( x + 3 ) ( x + 2 ) + 4 ! ( x + 4 ) ( x + 3 ) ( x + 2 ) + . . . . . . . ) = 1 L =\displaystyle \lim_{x\rightarrow \infty} \dfrac {((x+1)!)^2}{{\color{#3D99F6}{\begin{pmatrix} 1 + \dfrac {2!}{(x+2)} + \dfrac {3!}{(x+3)(x+2)} + \dfrac {4!}{(x+4)(x+3)(x+2)} + .......\end{pmatrix} = 1}}}

Clearly the denominator at x x \rightarrow \infty turns to be equal to 1. 1.

Leaving us with L = lim x ( ( x + 1 ) ! ) 2 L = \displaystyle \lim_{x \rightarrow \infty} ((x+1)!)^2 which is definitely \boxed{\infty} (Infinity/Not Defined).

For your answer to be 1 1 your limit should be L = lim x ( 1 + x ) ! f ( x ) \boxed{{\color{#20A900}{L = \displaystyle \lim_{x \rightarrow \infty } (1+x)! f(x)}}}

Kindly change your limit.

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...