Can you guess the function

Calculus Level 5

Let f ( x ) f(x) be a differentiable function satisfying f ( y ) f ( x ) = x x y y f ( y y x x ) f(y)-f(x)= \frac{ x^{ x } }{ y^ { y } }f \left( \frac{ y^{ y } }{ x^{ x } }\right) for all x , y R + x, y \in \mathbb R^+ . It is given that f ( 1 ) = 1 f^{ ' }\left( 1 \right) = 1 . Find the value of f ( e ) f ( 1 e ) \left| f\left( e \right) f\left( \frac { 1 }{ e } \right) \right|

Notation: e 2.718 e \approx 2.718 is the Euler's number .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishi Sharma
Nov 16, 2016

First by simple inspection we can see that f ( 1 ) = 0 f(1) = 0 . Now as the function is differentiable lim h 0 f ( x + h ) f ( x ) h = f ( x ) \lim _{ h\rightarrow 0 }{ \frac { f\left( x+h \right) -f\left( x \right) }{ h } } =f^{ ' }\left( x \right) we can replace y y by x + h x+h and x x by x x in the above differential equation to get. lim h 0 x x ( x + h ) ( x + h ) f ( ( x + h ) x + h x x ) h = f ( x ) \lim _{ h\rightarrow 0 }{ \frac { \frac { { x }^{ x } }{ { (x+h) }^{ (x+h) } } f\left( \frac { { (x+h) }^{ x+h } }{ { x }^{ x } } \right) }{ h } } =f^{ ' }\left( x \right) Now lim h 0 x x ( x + h ) ( x + h ) = 1 \lim _{ h\rightarrow 0 }{ \frac { { x }^{ x } }{ { (x+h) }^{ (x+h) } } } =1 . Also using f ( 1 ) = 0 f(1) = 0 we get. lim h 0 f ( ( x + h ) x + h x x ) f ( 1 ) h = f ( x ) \lim _{ h\rightarrow 0 }{ \frac { f\left( \frac { { (x+h) }^{ x+h } }{ { x }^{ x } } \right) -f\left( 1 \right) }{ h } } =f^{ ' }\left( x \right) Now note that lim h 0 f ( ( x + h ) x + h x x ) f ( 1 ) ( x + h ) x + h x x 1 = f ( 1 ) = 1 \lim _{ h\rightarrow 0 }{ \frac { f\left( \frac { { (x+h) }^{ x+h } }{ { x }^{ x } } \right) -f\left( 1 \right) }{ \frac { { (x+h) }^{ x+h } }{ { x }^{ x } } -1 } } =f^{ ' }\left( 1 \right) =1 . Substituting it back we get lim h 0 ( ( x + h ) x + h x x ) ( 1 ) h = f ( x ) \lim _{ h\rightarrow 0 }{ \frac { \left( \frac { { (x+h) }^{ x+h } }{ { x }^{ x } } \right) -\left( 1 \right) }{ h } } =f^{ ' }\left( x \right) After using L'hopital's rule we get f ( x ) = ln x + 1 f^{ ' }(x)=\ln { x } +1 Solving the differential equation and using at x=1 y=0. we get f ( x ) = x ln x f(x)=x\ln{ x } So f ( e ) = e f(e) = e and f ( 1 e ) = 1 e f( \frac{ 1 }{ e } ) =\frac{ -1 }{ e } .So the answer is 1 \boxed{ 1 }

booster test zindabad

Shubham Rustagi - 4 years, 7 months ago

Log in to reply

hahaha yes.

Rishi Sharma - 4 years, 7 months ago

Can you clean up the third/fourth line? You seem to have already assumed that x = 1 x = 1 , but haven't replaced that in the firmula.

Calvin Lin Staff - 4 years, 6 months ago

Log in to reply

@Rishi Sharma Esp with the report, I've edited the functional equation. Can you review through your solution again, and see why the error occured?

Calvin Lin Staff - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...