Can you guess the other terms?

Algebra Level 2

Shown below is an arithmetic progression.

7 2 , 23 2 , 39 2 , , x , , y , , z \dfrac{7}{2},\dfrac{23}{2},\dfrac{39}{2},\underline{\hspace{1cm}},x,\underline{\hspace{1cm}},y,\underline{\hspace{1cm}},z

What is x + y + z ? x+y+z?

151 2 \dfrac{151}{2} 167 2 \dfrac{167}{2} 247 2 \dfrac{247}{2} 309 2 \dfrac{309}{2} 425 2 \dfrac{425}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

It is an arithmetic progression with d = 23 2 7 2 = 39 2 23 2 = 8 d=\dfrac{23}{2}-\dfrac{7}{2}=\dfrac{39}{2}-\dfrac{23}{2}=8 . Use the formula a n = a 1 + ( n 1 ) d a_n=a_1+(n-1)d . The unkown terms terms are:

x = a 1 + 4 d = 7 2 + 4 ( 8 ) = 71 2 x=a_1+4d=\dfrac{7}{2}+4(8)=\dfrac{71}{2}

y = a 1 + 6 d = 7 2 + 6 ( 8 ) = 103 2 y=a_1+6d=\dfrac{7}{2}+6(8)=\dfrac{103}{2}

z = a 1 + 8 d = 7 2 + 8 ( 8 ) = 135 2 z=a_1+8d=\dfrac{7}{2}+8(8)=\dfrac{135}{2}

The desired answer is: x + y + z = 71 2 + 103 2 + 135 2 = x+y+z=\dfrac{71}{2}+\dfrac{103}{2}+\dfrac{135}{2}= 309 2 \boxed{\dfrac{309}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...