Can you guess the unit’s digit?

What is the units digit of 3 146 + 5 ( 1 4 39 ) 6 48 + 2 2005 3^{146} + 5(14^{39}) - 6^{48} + 2^{2005} ?

7 5 6 4 0 8 1 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Shithil Islam
Jan 25, 2017

Zach Abueg
Jan 2, 2017

There is a simple way to find the last digit of a b a^b , where the last digit of a a is x x .

Last digit of a b = a^b = last digit of x b m o d 4 x^{b \bmod {4}}

Note: If the b m o d 4 = 0 {b \bmod 4} = 0 , then let b = 4 b = 4 .

Ex: Last digit of 1 7 17 = 7 17 = 7 17 m o d 4 = 7 1 = 7 17^{17} = 7^{17} = 7^{17 \bmod {4}} = 7^1 = 7

Ex: Last digit of 97 3 2008 = 3 2008 = 3 2008 m o d 4 = 3 4 = 81 = 1 973^{2008} = 3^{2008} = 3^{2008 \bmod {4}} = 3^4 = 81 = 1

Now let's apply this to the problem:

3 146 = 3 146 m o d 4 = 3 2 = 9 3^{146} = 3^{146 \bmod {4}} = 3^2 = \color{#D61F06}{9}

5 ( 1 4 39 ) = 5 ( 4 39 ) = 5 ( 4 39 m o d 4 ) = 5 ( 4 3 ) = 5 × 64 = 5 × 4 = 2 0 5(14^{39}) = 5(4^{39}) = 5(4^{39 \bmod {4}}) = 5(4^3) = 5 \times 64 = 5 \times 4 = 2\color{#D61F06}{0}

6 48 = 6 48 m o d 4 = 6 4 = 129 6 6^{48} = 6^{48 \bmod {4}} = 6^4 = 129\color{#D61F06}{6}

2 2005 = 2 2005 m o d 4 = 2 1 = 2 2^{2005} = 2^{2005 \bmod {4}} = 2^1 = \color{#D61F06}{2}

Thus, the units digit of 3 146 + 5 ( 1 4 39 ) 6 48 + 2 2005 3^{146} + 5(14^{39}) - 6^{48} + 2^{2005} =

9 + 0 6 + 2 = 5 9 + 0 - 6 + 2 = 5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...