Can you guess this triangle?

Geometry Level 4

The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one. Find the numerical value of sum of squares of the sides of this triangle.


The answer is 77.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Let the side lengths be a , a + 1 a, a + 1 and a + 2 a + 2 and the smallest angle be x x . The largest angle will be opposite the longest side, and the smallest angle opposite the shortest. So by the Sine rule we have that

sin ( x ) a = sin ( 2 x ) a + 2 = 2 sin ( x ) cos ( x ) a + 2 cos ( x ) = a + 2 2 a . \dfrac{\sin(x)}{a} = \dfrac{\sin(2x)}{a + 2} = \dfrac{2\sin(x)\cos(x)}{a + 2} \Longrightarrow \cos(x) = \dfrac{a + 2}{2a}.

Now by the Cosine rule we have that

a 2 = ( a + 1 ) 2 + ( a + 2 ) 2 2 ( a + 1 ) ( a + 2 ) cos ( x ) a^{2} = (a + 1)^{2} + (a + 2)^{2} - 2(a + 1)(a + 2)\cos(x)

a 2 = 2 a 2 + 6 a + 5 2 ( a + 1 ) ( a + 2 ) cos ( x ) \Longrightarrow a^{2} = 2a^{2} + 6a + 5 - 2(a + 1)(a + 2)\cos(x)

cos ( x ) = a 2 + 6 a + 5 2 ( a + 1 ) ( a + 2 ) = a + 5 2 ( a + 2 ) . \Longrightarrow \cos(x) = \dfrac{a^{2} + 6a + 5}{2(a + 1)(a + 2)} = \dfrac{a + 5}{2(a + 2)}.

Thus a + 2 2 a = a + 5 2 ( a + 2 ) ( a + 2 ) 2 = a 2 + 5 a a 2 + 4 a + 4 = a 2 + 5 a a = 4. \dfrac{a + 2}{2a} = \dfrac{a + 5}{2(a + 2)} \Longrightarrow (a + 2)^{2} = a^{2} + 5a \Longrightarrow a^{2} + 4a + 4 = a^{2} + 5a \Longrightarrow a = 4.

Thus the side lengths are 4 , 5 , 6 4,5,6 , and the sum of their squares is 16 + 25 + 36 = 77 . 16 + 25 + 36 = \boxed{77}.

I did it the same way

Dhruv Goyal - 6 years, 4 months ago
Chew-Seong Cheong
Jan 27, 2015

I didn't guess it. I worked it out.

Let the natural number side lengths of the triangle be n n , n + 1 n+1 and n + 2 n+2 , α \alpha be the angle opposite the shortest side n n and β \beta , opposite n + 1 n+1 , then the remaining angle γ = π α β \gamma = \pi - \alpha - \beta .

Then, using Cosine Rule, we have:

cos α = ( n + 1 ) 2 + ( n + 2 ) 2 n 2 2 ( n + 1 ) ( n + 2 ) cos β = n 2 + ( n + 2 ) 2 ( n + 1 ) 2 2 n ( n + 2 ) \cos {\alpha} = \dfrac {(n+1)^2+(n+2)^2-n^2}{2(n+1)(n+2)}\quad \cos {\beta} = \dfrac {n^2+(n+2)^2-(n+1)^2}{2n(n+2)}

Finding out α \alpha and β \beta for n = 1 , 2 , 3... n=1,2,3... , we have the following table.

We note that for triangle with side lengths 4 4 , 5 5 and 6 6 , γ = 2 α \gamma = 2\alpha . It is therefore, the triangle we need.

Therefore, the required answer is 4 2 + 5 2 + 6 2 = 77 4^2+5^2+6^2 = \boxed{77}

W i t h u s u a l n o t a t i o n f o r A B C , A = 2 C , S i n A = S i n 2 C = 2 S i n C C o s C . A l s o B = 180 3 C . S i n ( 180 3 C ) = S i n 3 C = 3 S i n C 4 S i n 3 C = S i n C ( 4 C o s 2 C 1 ) . a = b + 1 , c = b 1. U s i n g S i n L a w , a S i n A = b S i n B = c S i n C b + 1 2 S i n C C o s C = b S i n C ( 4 C o s 2 C 1 ) = b 1 S i n C . M u l t i p l y i n g e a c h t e r m b y S i n C , 1 b + 1 2 C o s C = 2 b 4 C o s 2 C 1 = 3 b 1 1 . U s i n g d i v i d e n d o c o m p o n e n d o , 3 + 2 , 1 b + 1 2 C o s C = 3 + 2 , = 2 b 1 4 C o s 2 C . 4 C o s 2 C 2 C o s C = 2 b 1 b + 1 , s i m p l i f y i n g . C o s C = 1 3 2 ( b + 1 ) . . . ( ) With\ usual\ notation\ for\ \triangle\ ABC, \ \ \ \ \ \ \ \angle\ A=\angle 2C,\ \ \ \therefore\ SinA=Sin2C=2SinC*CosC.\\ Also\ B=180 - 3C.\ \ \ \ \ Sin(180 - 3C)=Sin3C=3SinC - 4Sin^3C=SinC*(4Cos^2C - 1).\\ a=b+1,\ \ c=b-1.\ \ \ \ \ \ Using\ Sin\ Law,\\ \dfrac{a}{SinA}=\dfrac{b}{SinB}=\dfrac{c}{SinC}\ \ \ \implies\ \ \dfrac{b+1}{2SinC*CosC}=\dfrac{b}{SinC*(4Cos^2C - 1)}=\dfrac{b-1}{SinC}.\\ Multiplying\ each\ term\ by\ SinC,\ \ \ \ \boxed{1} \dfrac{b+1}{2*CosC}=\boxed{2}\dfrac{b}{4Cos^2C - 1}=\boxed{3}\dfrac{b-1} 1.\\ Using\ dividendo-componendo,\ \boxed{3}+\boxed{2},\ \ \boxed{1} \dfrac{b+1}{2*CosC}=\boxed{3}+\boxed{2},=\dfrac{2b - 1}{4Cos^2C}.\\ \implies\ \dfrac{4Cos^2C}{2*CosC}=\dfrac{2b - 1}{b+1},\ \ \ \ \therefore\ simplifying.\ \ CosC=1-\dfrac 3{2*(b+1)}...(**)\\ S u b s t i t u t i n g i n 1 a n d e q u a t i n g w i t h 2 , b + 1 2 ( 1 3 2 ( b + 1 ) ) = b 1. ( b + 1 ) 2 2 b 1 = b 1. b 0 , s i m p l i f y i n g b = 5. Substituting\ {**} \ in\ \boxed{1}\ and\ equating\ with\ \boxed{2},\ \ \ \dfrac{b+1}{2*(1 - \frac 3{2*(b+1)})}=b - 1.\\ \implies\ \dfrac{(b+1)^2}{2b - 1}=b-1.\ \ \ b\neq0,\ \therefore\ simplifying\ \ b=5.\\ ( a , b , c , ) = ( 4 , 5 , 6 ) . S o t h e s u m o f t h e i r s q u a r e s i s = 16 + 25 + 36 = 77 (a,b,c,)=(4,5,6). \ \ So\ the\ sum\ of\ their\ squares\ is =16+25+36=\ \ \ \large\ \color{#D61F06}{77}

Prince Loomba
Feb 10, 2015

i) Let the 3 sides of the triangle be n, n+1, n+2 where n is a natural number; and let the smallest be α deg; so biggest angle is 2α deg and the 3rd angle would be (180 - 3α).

ii) Applying sine law of the triangle, we have n/sin(α) = (n+1)/{sin(180 - 3α) = (n+2)/sin(2α)

==> n/sin(α) = (n+1)/sin(3α) = (n+2)/2 sin(α) cos(α)

==> n/sin(α) = (n+1)/{3sin(α) - 4sin³α} = (n+2)/2 sin(α) cos(α) ² ³

Multiplying by sin(α), as α is not equal to 0, sin(α) is also not equal to zero

n = (n+1)/(3 - 4sin²α) = (n+2)/2*cos(α)

iii) From the above n/(n + 1) = 1/(3 - 4sin²α) = 1/(4cos²α - 1) ==> cos²α = (2n + 1)/4n ----- (1)

and n/(n + 2) = 1/{2*cos(α)} ==> cos(α) = (n + 2)/2n ==> cos²α = (n + 2)²/4n² ----- (2)

iv) Equating (1) & (2): (2n + 1)/4n = (n + 2)²/4n² ==>n² - 3n - 4 = 0 Solving either n = 4 or -1 But being n is a natural number n is not equal to -1;hence n = 4

Thus the measure of 3 sides are 4, 5 & 6 units. Sum of squares: 77

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...