Can You Handle This One

Algebra Level 4

f ( x , y , z ) = 2 x 2 + 2 y 2 2 z 2 + 7 x y + 1 z \large{f(x,y,z)= 2x^{2}+2y^{2}-2z^{2}+\frac{7}{xy}+\frac{1}{z}}

There are three pairwise distinct numbers a , b , c a,b,c that satisfies the above equation in a way such that f ( a , b , c ) = f ( b , c , a ) = f ( c , a , b ) f(a,b,c)= f(b,c,a)=f(c,a,b) .

What is a + b + c a+b+c ?


Problem Source: cms.math/competitions 2009.
8 7 9 10

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hung Woei Neoh
Jun 9, 2016

Wow. This one was a real workout.

{ f ( a , b , c ) = 2 a 2 + 2 b 2 2 c 2 + 7 a b + 1 c 1 f ( b , c , a ) = 2 b 2 + 2 c 2 2 a 2 + 7 b c + 1 a 2 f ( c , a , b ) = 2 c 2 + 2 a 2 2 b 2 + 7 c a + 1 b 3 \begin{cases} f(a,b,c) = 2a^2+2b^2-2c^2 + \dfrac{7}{ab} + \dfrac{1}{c}&\implies\boxed{1}\\ f(b,c,a) = 2b^2+2c^2-2a^2 + \dfrac{7}{bc} + \dfrac{1}{a}&\implies\boxed{2}\\ f(c,a,b) = 2c^2+2a^2-2b^2+\dfrac{7}{ca} + \dfrac{1}{b} &\implies\boxed{3}\end{cases}


1 = 2 : \boxed{1}=\boxed{2}:

2 a 2 + 2 b 2 + 2 c 2 + 7 a b + 1 c = 2 b 2 + 2 c 2 2 a 2 + 7 b c + 1 a 4 a 2 4 c 2 = 7 b c 7 a b + 1 a 1 c 4 ( a c ) ( a + c ) = 7 ( a c ) a b c a c a c 2a^2+2b^2+2c^2 + \dfrac{7}{ab} + \dfrac{1}{c} = 2b^2+2c^2-2a^2 + \dfrac{7}{bc} + \dfrac{1}{a}\\ 4a^2-4c^2 = \dfrac{7}{bc} - \dfrac{7}{ab} + \dfrac{1}{a} -\dfrac{1}{c}\\ 4(a-c)(a+c) = \dfrac{7(a-c)}{abc} -\dfrac{a-c}{ac}

Since we know that a b c a \neq b \neq c , we know that a c 0 a-c \neq 0

Divide the equation by ( a c ) (a-c) :

4 ( a + c ) = 7 a b c 1 a c 4 ( a + c ) = 7 b a b c 4 a b c ( a + c ) = 7 b 4 4(a+c) = \dfrac{7}{abc} -\dfrac{1}{ac}\\ 4(a+c) = \dfrac{7-b}{abc}\\ 4abc(a+c) = 7-b\implies\boxed{4}


Do the same thing for 1 = 3 \boxed{1} = \boxed{3} (Note that b c 0 b-c \neq 0 as well):

2 a 2 + 2 b 2 + 2 c 2 + 7 a b + 1 c = 2 c 2 + 2 a 2 2 b 2 + 7 a c + 1 b 4 b 2 4 c 2 = 7 a c 7 a b + 1 b 1 c 4 ( b c ) ( b + c ) = 7 ( b c ) a b c b c b c 4 ( b + c ) = 7 a b c 1 b c 4 ( b + c ) = 7 a a b c 4 a b c ( b + c ) = 7 a 5 2a^2+2b^2+2c^2 + \dfrac{7}{ab} + \dfrac{1}{c} = 2c^2+2a^2-2b^2 + \dfrac{7}{ac} + \dfrac{1}{b}\\ 4b^2-4c^2 = \dfrac{7}{ac} - \dfrac{7}{ab} + \dfrac{1}{b} -\dfrac{1}{c}\\ 4(b-c)(b+c) = \dfrac{7(b-c)}{abc} -\dfrac{b-c}{bc}\\ 4(b+c) = \dfrac{7}{abc} -\dfrac{1}{bc}\\ 4(b+c) = \dfrac{7-a}{abc}\\ 4abc(b+c) = 7-a\implies\boxed{5}


4 ÷ 5 : \boxed{4} \div \boxed{5}:

4 a b c ( a + c ) 4 a b c ( b + c ) = 7 b 7 a \dfrac{4abc(a+c)}{4abc(b+c)} = \dfrac{7-b}{7-a}

Note that for the original expression to be defined, a , b , c 0 a,b,c \neq 0 , because a , b a,b and c c are in denominators. This implies that a b c 0 abc \neq 0 as well, and we can cross off the a b c abc in the equation:

a + c b + c = 7 b 7 a ( 7 a ) ( a + c ) = ( 7 b ) ( b + c ) 7 a + 7 c a 2 a c = 7 b + 7 c b 2 b c 7 a 7 b = a 2 b 2 + a c b c ( a b ) ( a + b ) + c ( a b ) = 7 ( a b ) \dfrac{a+c}{b+c} = \dfrac{7-b}{7-a}\\ (7-a)(a+c) = (7-b)(b+c)\\ 7a+7c-a^2-ac = 7b + 7c- b^2 - bc\\ 7a-7b = a^2-b^2 + ac - bc\\ (a-b)(a+b) + c(a-b) = 7(a-b)

Remember, a b 0 a-b \neq 0 as well, so we divide it out

a + b + c = 7 a+b+c = \color{#D61F06}{\boxed{\color{#333333}{7}}}

So true, nice, amazing and brilliant solution. You left no room for me to argue.

Hana Wehbi - 5 years ago

Log in to reply

Thanks ¨ \ddot\smile I usually only write solutions when I am very certain that it is correct and sufficiently proved.

Anyway, here's a variant you should try

Hung Woei Neoh - 5 years ago

Log in to reply

I will try it. Thank you for sharing yours too.

Hana Wehbi - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...