Can you Identify?

Calculus Level 4

n = 1 49 1 n + ( n 1 ) ( n + 1 ) = a + b c \sum_{n = 1}^{49} \frac{1}{\sqrt{n + \sqrt{(n - 1)(n + 1)}}} = a + b\sqrt{c}

a , b , c a, b, c are positive integers, and c c is not divisible by the square of any prime.

find [ a + b + c 2.123456789 ] \Big[\frac{a+ b + c}{-2.123456789}\Big]

[.] denotes greatest integer function

Please Post Your Solutions


The answer is -5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

U Z
Oct 28, 2014

T n = 1 n + ( n 2 1 ) T_{n} = \dfrac{1}{\sqrt{n + \sqrt{(n^{2} - 1)}}}

= 1 ( n + 1 2 + n 1 2 ) 2 = \dfrac{1}{\sqrt{\left(\sqrt{\dfrac{n+1}{2}} + \sqrt{\dfrac{n -1}{2}}\right)^{2}}}

= 1 n + 1 2 + n 1 2 =\dfrac{1}{\sqrt{\dfrac{n + 1}{2}} + \sqrt{\dfrac{n - 1}{2}}}

= n + 1 2 n 1 2 n + 1 2 n 1 2 = \dfrac{\sqrt{\dfrac{n + 1}{2}}- \sqrt{\dfrac{n - 1}{2}}}{\dfrac{n + 1}{2} - \dfrac{n - 1}{2}}

= n + 1 2 n 1 2 = \sqrt{\dfrac{n + 1}{2}} - \sqrt{\dfrac{n - 1}{2}}

= 2 2 0 + 3 2 1 2 + . . . . . . . . . . . + 50 2 48 2 = \sqrt{\dfrac{2 }{2}} - 0 + \sqrt{\dfrac{3 }{2}} - \sqrt{\dfrac{1 }{2}} + ...........+ \sqrt{\dfrac{50 }{2}} - \sqrt{\dfrac{48 }{2}}

= 50 2 + 49 2 1 2 0 = 5 + 3 2 = \sqrt{\dfrac{50 }{2}} + \sqrt{\dfrac{49 }{2}} - \sqrt{\dfrac{1 }{2}} - 0 = 5 + 3\sqrt{2}

Why is it tagged in calculus?

Kartik Sharma - 6 years, 7 months ago

Log in to reply

Sequence and series comes under calculus part( here on brilliant.org) ,

but I too agree because in India it is taught under algebra

U Z - 6 years, 7 months ago

well there is a very useful formula too which I want to share. It says -

a + b c = a + b 2 a 2 + a b 2 a 2 \sqrt{a + b\sqrt{c}} = \sqrt{\frac{a + \sqrt{{b}^{2} - a}}{2}} + \sqrt{\frac{a - \sqrt{{b}^{2} - a}}{2}}

Kartik Sharma - 6 years, 7 months ago

Log in to reply

If in some question we get the RHS as some function or equation and we want to reduce it to a simpler form like that in the LHS , then what will be the value of c with respect to a and b

Vighnesh Raut - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...