What's the best approach?

Calculus Level 4

0 π x 3 cos ( x ) sin ( x ) d x = ? \Large \displaystyle\int\limits^{{\pi}}_{0}x^3 {\cos\left(x\right)\sin\left(x\right)\, \mathrm{d}x} = \ ?


The answer is -6.5734.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rewrite the considered integral as 1 2 0 π x 3 sin ( 2 x ) d x \frac{1}{2}\int_0^\pi x^3\sin(2x)\,dx Now consider 0 π cos ( a x ) d x = sin ( a π ) a \int_0^\pi \cos(ax)\,dx = \frac{\sin(a\pi)}{a} Differentiating w.r.t. a a three times and putting a = 2 a=2 so that 0 π x 3 sin ( 2 x ) d x = 3 a 3 [ sin ( a π ) a ] a = 2 = π 4 ( 3 2 π 2 ) \int_0^\pi x^3\sin(2x)\,dx=\frac{\partial^3}{\partial a^3}\left[\frac{\sin(a\pi)}{a}\right]_{a=2}=\frac{\pi}{4}\left(3-2\pi^2\right) Hence 0 π x 3 sin ( x ) cos ( x ) d x = π 8 ( 3 2 π 2 ) 6.57347192497878 \int_0^\pi x^3\sin(x)\cos(x)\,dx=\frac{\pi}{8}\left(3-2\pi^2\right)\approx-6.57347192497878 Remark : I think differentiating multiple times (although it's tedious) is easier than applying integration by parts multiple times.

Pratik Shastri
Oct 29, 2014

I solved this problem using complex numbers. I = 0 π cos x sin x x 3 d x = 1 2 0 π sin 2 x x 3 d x = 1 2 0 π e 2 i x x 3 d x \begin{aligned} I &=\int_{0}^{\pi} \cos {x} \ \sin {x} \ x^3 \mathrm{d}x\\ &=\dfrac{1}{2} \int_{0}^{\pi} \sin {2x} \ \ x^3 \mathrm{d}x \\ &= \dfrac{1}{2}\Im \int_{0}^{\pi} e^{2ix} \ x^3 \mathrm{d}x \end{aligned}

Now, substitute 2 i x = t 2ix=t to get I = 1 32 0 2 i π e t t 3 d t = 1 32 0 2 i π e t ( t 3 + 3 t 2 3 t 2 6 t + 6 t + 6 6 ) d t ( ) = 1 32 [ e t ( t 3 3 t 2 + 6 t 6 ) ] 0 2 i π \begin{aligned} I &= \dfrac{1}{32} \Im \int_{0}^{2i\pi} e^t \ t^3 \mathrm{d}t\\ &=\dfrac{1}{32} \Im \int_{0}^{2i\pi} e^t (t^3+3t^2-3t^2-6t+6t+6-6) \mathrm{d}t \ \ \ \ \ \ \ \ \ \ (\star)\\ &= \dfrac{1}{32} \Im\left[e^t(t^3-3t^2+6t-6)\right]_{0}^{2i\pi} \end{aligned}

Substitute and get the imaginary part. You will find that I = 3 π 2 π 3 8 6.573 I=\dfrac{3\pi-2\pi^3}{8} \approx -6.573

Note : \text{Note :} I arrived at ( ) (\star) by using the fact that a b e x ( f ( x ) + f ( x ) ) = [ e x f ( x ) ] a b \int_{a}^{b} e^x(f(x)+f'(x))=\left[e^x f(x)\right]_{a}^{b}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...