Can You Limit It?

Calculus Level 3

Find the value of the constant n n satisfying

lim x 0 ( cos x 1 ) ( cos x e x ) x n 0. \lim_{x\to 0}\dfrac{(\cos x-1)(\cos x - e^x)}{x^n}\neq 0 .

1 2 3 4 5 6 None of the above

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 27, 2016

Relevant wiki: Maclaurin Series

L = lim x 0 ( cos x 1 ) ( cos x e x ) x n Using Maclaurin series = lim x 0 ( 1 x 2 2 ! + x 4 4 ! x 6 6 ! + 1 ) ( 1 x 2 2 ! + x 4 4 ! x 6 6 ! + 1 x x 2 2 ! x 3 3 ! + ) x n = lim x 0 ( x 2 2 ! + x 4 4 ! x 6 6 ! + ) ( x x 2 x 3 3 ! x 5 5 ! ) x n = lim x 0 x 3 ( 1 2 ! + x 2 4 ! x 4 6 ! + ) ( 1 x x 2 3 ! x 4 5 ! ) x n Setting n = 3 = lim x 0 ( 1 2 ! + x 2 4 ! x 4 6 ! + ) ( 1 x x 2 3 ! x 4 5 ! ) = 1 2 0 \begin{aligned} \mathfrak L & = \lim_{x \to 0} \frac{(\color{#3D99F6}{\cos x}-1)(\color{#3D99F6}{\cos x} - \color{#3D99F6}{e^x})}{x^n} \quad \quad \small \color{#3D99F6}{\text{Using Maclaurin series}} \\ & = \lim_{x \to 0} \frac{\left(\color{#3D99F6}{1-\frac{x^2}{2!} + \frac{x^4}{4!}-\frac{x^6}{6!}+\cdots}-1\right) \left( \color{#3D99F6}{1-\frac{x^2}{2!} + \frac{x^4}{4!}-\frac{x^6}{6!}+\cdots} - \color{#3D99F6}{1 - x - \frac{x^2}{2!}-\frac{x^3}{3!}+\cdots} \right)}{x^n} \\ & = \lim_{x \to 0} \frac{\left(-\frac{x^2}{2!} + \frac{x^4}{4!}-\frac{x^6}{6!}+\cdots \right) \left(-x-x^2 - \frac{x^3}{3!} - \frac{x^5}{5!}-\cdots \right)}{x^n} \\ & = \lim_{x \to 0} \frac{x^\color{#D61F06}{3} \left(-\frac{1}{2!} + \frac{x^2}{4!}-\frac{x^4}{6!}+\cdots \right) \left(-1-x - \frac{x^2}{3!} - \frac{x^4}{5!}-\cdots \right)}{x^\color{#D61F06}{n}} \quad \quad \small \color{#D61F06}{\text{Setting }n=\boxed{3}} \\ & = \lim_{x \to 0} \left(-\frac{1}{2!} + \frac{x^2}{4!}-\frac{x^4}{6!}+\cdots \right) \left(-1-x - \frac{x^2}{3!} - \frac{x^4}{5!}-\cdots \right) \\ & = \frac{1}{2} \ne 0 \end{aligned}

The answer is n = 3 n = \boxed{3} .

Your Latex is not appearing ?!

Jake Tricole - 2 years, 9 months ago
Prakhar Bindal
May 30, 2016

Using trigonometric half angle formula

cosx-1 = -2sin^2(x/2)

Using popular limit x tends to zero sinx / x = 1

Ignoring that constant because we have to find n

cosx-e^x / x^(n-2)

Applying L Hospitals rule for 0/0 Form

-sinx-e^x / (n-2)x^(n-3)

Now this is not 0/0 form because numerator is -1 hence for limit to be finite and non zero n-3 = 0

Therefore n = 3

The value of n cant be less than 3 as we might end up getting 0 as limit

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...