Let
be any one positive integral solution to
where
are positive integers, such that
is maximal.
Find the value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We begin like this:
3 n ( a + b ) = 2 n a b
a ∣ 3 n b , b ∣ 3 n a → a = 3 n 1 x , b = 3 n 2 x , 3 ∤ x
3 n x ( 3 n 1 + 3 n 2 ) = 2 n x 2 3 n 1 + n 2
Let n 1 ≥ n 2 ≥ 0
3 n ( 3 n 1 − n 2 + 1 ) = 2 n x 3 n 1 → n = n 1
3 n − n 2 + 1 = 2 n x
1 + 3 N m o d 8 = 4 , 2
n = 1
1 + 3 1 − n 2 = 2 x
n 2 = 0 → x = 2 , a = 6 , b = 2
n 2 = 1 → x = 1 , a = 3 , b = 3
n = 2
1 + 3 2 − n 2 = 4 x
n 2 = 1 → x = 1 , a = 9 , b = 3
Triples are ( a , b , n ) = ( 6 , 2 , 1 ) , ( 3 , 3 , 1 ) , ( 9 , 3 , 2 ) and its permutations.
Maximum value = 9 + 3 + 2 = 1 4 .