Can you measure the angle?

Geometry Level 3

According to the picture above , what is the measure(in degrees) of ∠EDF ? (consider 'O' as the center of the circle DIGH)


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Sagnik Saha
Apr 25, 2014

We know that B O C = 9 0 A 2 \angle BOC = 90^{\circ} - \frac{\angle A}{2} .

Applying Law's of cosine in A B C \triangle ABC , We have B C 2 = A C 2 + A B 2 2 × A C × A B × cos A BC^2 = AC^2 + AB^2 - 2 \times AC \times AB \times \cos \angle A .

Substituting the values we get cos B A C = 1 2 \cos \angle BAC = \frac{1}{2} .

Hence A = 6 0 \angle A = 60^{\circ} .

Therefore, B O C = 9 0 6 0 2 = 9 0 3 0 = 6 0 \angle BOC = 90^{\circ} - \frac{60^{\circ}}{2}= 90^{\circ} - 30^{\circ} = 60^{\circ} .

Therefore, E D C = 1 2 × 6 0 = 3 0 \angle EDC = \frac{1}{2} \times 60^{\circ} = \boxed{30^{\circ}}

it is something very interesting to solve that by guessing what an angle it can be..

Shamla Abduraheem - 7 years ago
Daniel Liu
Apr 25, 2014

By Law of Cosines on A B C \triangle ABC , ( s q r t 2 3 1 ) 2 = ( 2 ) 2 + ( 3 ) 2 2 2 3 cos B \left(\dfrac{sqrt{2}}{\sqrt{3}-1}\right)^2=(\sqrt{2})^2+(\sqrt{3})^2-2\cdot \sqrt{2}\cdot \sqrt{3}\cos B

Simplifying ths expression, we obtain that 2 + 3 = 5 2 6 cos B 2+\sqrt{3}=5-2\sqrt{6}\cos B

Isolating cos B \cos B shows that cos B = 3 3 2 6 = 6 2 4 \cos B = \dfrac{3-\sqrt{3}}{2\sqrt{6}}=\dfrac{\sqrt{6}-\sqrt{2}}{4} so B = 7 5 B=75^{\circ} .

By Law of Sines, 2 3 1 sin 7 5 = 2 sin C \dfrac{\dfrac{\sqrt{2}}{\sqrt{3}-1}}{\sin 75^{\circ}}=\dfrac{\sqrt{2}}{\sin C} Solving for sin C \sin C , we obtain sin C = 2 2 \sin C=\dfrac{\sqrt{2}}{2} so C = 4 5 C=45^{\circ} . This also means A = 6 0 A=60^{\circ} .

Note that B O BO is the angle bisector of C B J \angle CBJ , and C O CO is the angle bisector of B C K \angle BCK , from the definition of the excircle. Thus, B C O = 135 2 \angle BCO=\dfrac{135}{2} and B C O = 105 2 \angle BCO=\dfrac{105}{2} .

Thus, B O C = 6 0 \angle BOC=60^{\circ} , and E D F = 60 2 = 3 0 \angle EDF = \dfrac{60}{2}=\boxed{30^{\circ}} .

Rifath Rahman
Oct 11, 2014

Using Heron's formula we get the area of triangle 1.183012702,Now 1/2 * BC * AC sin C=1.183..... solving it we get C=45,and the same way B=75,So JBC=105 that makes OBC=105/2=52.5[when an exterior circle is drawn the exterior angle is bisected] ,similarly OCB=67.5,then BOC=60,and inscribed is 1/2 of central angle so EDF=60/2=30

Shamim Hasan
Apr 24, 2014

L e t , i n t r i a n g l e A B C , B C = a = 3 , A C = b = 2 3 1 , & A B = c = 2 s o , C o s A B C = c 2 + a 2 b 2 2 c a = ( 2 ) 2 + ( 3 ) 2 ( 2 3 1 ) 2 2 × 2 × 3 = 6 2 4 s o , A B C = cos 1 ( 6 2 4 ) = 75 & J B C = ( 180 75 ) = 105 C o s A C B = a 2 + b 2 c 2 2 a b = ( 3 ) 2 + ( 2 3 1 ) 2 ( 2 ) 2 2 × 3 × ( 2 3 1 ) = 1 2 s o , A C B = cos 1 ( 1 2 ) = 45 & K C B = ( 180 45 ) = 135 A s c i r c l e D I G H i s a n e x t e r i o r c i r c l e , s o B O & C O a r e t h e b i s e c t o r s o f J B C & K C B s o , O B C = J B C 2 = 105 2 = 52.5 & O C B = K C B 2 = 135 2 = 67.5 I n t r i a n g l e O B C , B O C = 180 O B C O C B = 180 52.5 67.5 = 60 s o , E O F = B O C = 60 a s w e k n o w , a n i n s c r i b e d a n g l e i s h a l f o f t h e c e n t r a l a n g l e f r o m t h e s a m e a r c ( i n t e r c e p t e d a r c ) s o , E D F = E O F 2 = 30 Let\quad ,\quad in\quad triangle\quad ABC\quad ,\quad BC\quad \quad =\quad a\quad =\quad \sqrt { 3 } \quad ,\quad AC\quad \quad =\quad b\quad =\quad \frac { \sqrt { 2 } }{ \sqrt { 3 } -\quad 1 } \quad ,\quad \quad \quad \& \quad \quad AB\quad =\quad c\quad =\quad \sqrt { 2 } \\ so,\quad Cos\angle ABC\quad =\quad \frac { { c }^{ 2 }\quad +\quad { a }^{ 2 }\quad -\quad { b }^{ 2 } }{ 2ca } \quad =\quad \frac { ({ \sqrt { 2 } ) }^{ 2 }\quad +\quad { (\sqrt { 3 } ) }^{ 2 }\quad \quad -\quad { (\frac { \sqrt { 2 } }{ \sqrt { 3 } -\quad 1 } ) }^{ 2 } }{ 2\quad \times \quad \sqrt { 2 } \quad \times \quad \sqrt { 3 } } \quad =\quad \frac { \sqrt { 6 } -\quad \sqrt { 2 } }{ 4 } \quad \\ so,\quad \angle ABC\quad =\quad \quad \cos ^{ -1 }{ (\quad \frac { \sqrt { 6 } -\quad \sqrt { 2 } }{ 4 } ) } =\quad 75\quad \quad \quad \& \quad \angle JBC\quad =\quad (180\quad -\quad 75)\quad =\quad 105\quad \\ Cos\angle ACB\quad =\quad \frac { { a }^{ 2 }\quad +\quad { b }^{ 2 }\quad -\quad { c }^{ 2 } }{ 2ab } \quad =\quad \frac { ({ \sqrt { 3 } ) }^{ 2 }\quad +\quad { (\frac { \sqrt { 2 } }{ \sqrt { 3 } -\quad 1 } ) }^{ 2 }\quad -\quad { (\sqrt { 2 } ) }^{ 2 } }{ 2\quad \times \quad \sqrt { 3 } \quad \times \quad (\frac { \sqrt { 2 } }{ \sqrt { 3 } -\quad 1 } ) } \quad =\quad \frac { 1 }{ \sqrt { 2 } } \\ so,\quad \angle ACB\quad =\quad \cos ^{ -1 }{ (\frac { 1 }{ \sqrt { 2 } } ) } \quad =\quad 45\quad \quad \quad \& \quad \angle KCB\quad =\quad (180\quad -\quad 45)\quad =\quad 135\quad \\ As\quad \quad circle\quad DIGH\quad is\quad an\quad exterior\quad circle\quad \quad ,\quad \quad so\quad \quad BO\quad \& \quad CO\quad are\quad the\quad bisectors\quad of\quad \angle JBC\quad \& \quad \angle KCB\quad \\ so,\quad \quad \angle OBC\quad =\quad \frac { \angle JBC }{ 2 } \quad =\quad \frac { 105 }{ 2 } \quad =\quad 52.5\quad \quad \quad \& \quad \angle OCB\quad =\quad \frac { \angle KCB }{ 2 } \quad =\quad \frac { 135 }{ 2 } \quad =\quad 67.5\\ In\quad triangle\quad OBC\quad \quad ,\quad \quad \angle BOC\quad =\quad 180\quad -\quad \angle OBC\quad -\quad \angle OCB\quad =\quad 180\quad -\quad 52.5\quad -\quad 67.5\quad =\quad 60\\ so,\quad \angle EOF\quad =\quad \angle BOC\quad =\quad 60\\ as\quad we\quad know,\quad an\quad inscribed\quad angle\quad is\quad half\quad of\quad the\quad central\quad angle\quad from\quad the\quad same\quad arc\quad (intercepted\quad arc)\quad \\ so,\quad \angle EDF\quad =\quad \frac { \angle EOF }{ 2 } \quad =\quad 30

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...