Can you minimize f ( a , b , c , d ) f(a,b,c,d) ?

Algebra Level 4

a , b , c , d a,b,c,d are non-negative real numbers such that a b + b c + c d + d a = 1 ab+bc+cd+da=1

The minimum value of f ( a , b , c , d ) f(a,b,c,d) = = a 3 b + c + d + b 3 a + c + d + c 3 a + b + d + d 3 a + b + c \frac{a^{3}}{b+c+d}+\frac{b^{3}}{a+c+d}+\frac{c^{3}}{a+b+d}+\frac{d^{3}}{a+b+c} can be expressed in the form p q \frac{p}{q} where p p and q q are relatively prime positive integers.

Find the value of p + q p+q


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Souryajit Roy
May 15, 2014

Let A = b + c + d , B = a + c + d , C = a + b + d , D = a + b + c A=b+c+d, B=a+c+d, C=a+b+d, D=a+b+c . Hence, A + B + C + D = 3 ( a + b + c + d ) A+B+C+D=3(a+b+c+d) .

Note that a , b , c , d {a,b,c,d} and 1 A , 1 B , 1 C , 1 D {\frac{1}{A},\frac{1}{B},\frac{1}{C},\frac{1}{D}} are similarly ordered.

So by Chebychev's inequality, we have f ( a , b , c , d ) 1 4 ( a 3 + b 3 + c 3 + d 3 ) ( 1 A + 1 B + 1 C + 1 D ) f(a,b,c,d)≥\frac{1}{4}(a^{3}+b^{3}+c^{3}+d^{3})(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}+\frac{1}{D}) .

Again, ( A + B + C + D ) ( 1 A + 1 B + 1 C + 1 D ) 16 (A+B+C+D)(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}+\frac{1}{D})≥16

So, f ( a , b , c , d ) 4 ( a 3 + b 3 + c 3 + d 3 ) 3 ( a + b + c + d ) f(a,b,c,d)≥\frac{4(a^{3}+b^{3}+c^{3}+d^{3})}{3(a+b+c+d)}

Again, by Chebychev's inequality ( a 3 + b 3 + c 3 + d 3 ) 1 4 ( a + b + c + d ) ( a 2 + b 2 + c 2 + d 2 ) 1 4 ( a + b + c + d ) ( a b + b c + c d + d a ) = 1 4 ( a + b + c + d ) (a^{3}+b^{3}+c^{3}+d^{3})≥\frac{1}{4}(a+b+c+d)(a^{2}+b^{2}+c^{2}+d^{2})≥\frac{1}{4}(a+b+c+d)(ab+bc+cd+da)=\frac{1}{4}(a+b+c+d)

Hence, the minimum value of f ( a , b , c , d ) f(a,b,c,d) is 1 3 \frac{1}{3} .

In the end: a 2 + b 2 + c 2 + d 2 ( a + d ) ( b + c ) a^2+b^2+c^2+d^2\geq (a+d)(b+c) , how have you proved this?

Felipe Hofmann - 6 years, 10 months ago

Log in to reply

( a + d ) ( b + c ) a b + b c + c d + d a (a+d)(b+c)\neq ab + bc + cd + da , you misread.

a 2 + b 2 + c 2 + d 2 a b + b c + c d + d a a^2+b^2+c^2+d^2\ge ab+bc+cd+da ( a b ) 2 + ( b c ) 2 + ( c d ) 2 + ( d a ) 2 0 \iff (a-b)^2+(b-c)^2+(c-d)^2+(d-a)^2\ge 0

This is a classic inequality, you should memorize it.

mathh mathh - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...