Normal Parabola

Geometry Level 5

A point A A is taken on the parabola y = x 2 y={ x }^{ 2 } . Now at point A A a normal is drawn which meets the parabola again at point B B . Find the minimum value of length of A B AB . Give your answer to three decimal places.


The answer is 2.598.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronak Agarwal
Jul 2, 2014

W e t a k e a p o i n t P 1 = ( x 0 , x 0 2 ) o n t h e p a r a b o l a . T h e n s l o p e o f t a n g e n t i s = 2 x 0 H e n c e s l o p e o f n o r m a l i s 1 2 x 0 . S o e q u a t i o n o f n o r m a l i s ( x x 0 ) = 2 x 0 ( y x 0 2 ) . S o l v i n g i t w i t h t h e p a r a b o l a w e g e t x = x 0 , 1 2 x 0 x 0 . S o t h e o t h e r p o i n t i s P 2 = ( 1 2 x 0 x 0 , ( 1 2 x 0 x 0 ) 2 ) S o P 1 P 2 = 4 x 0 2 ( 1 + 1 4 x 0 2 ) 3 . F o r m a x i m i s i n g P 1 P 2 w e w i l l m a x i m i s e t h e p a r t u n d e r t h e r a d i c a l . f ( x 0 ) = 4 x 0 2 ( 1 + 1 4 x 0 2 ) 3 . E q u a t i n g i t s d e r i v a t i v e t o 0 w e g e t x 0 = ± 1 2 . P u t t h e v a l u e a n d w e g e t P 1 P 2 = 3 3 2 . We\quad take\quad a\quad point\quad { P }_{ 1 }=({ x }_{ 0 },{ x }_{ 0 }^{ 2 })\quad on\quad the\quad parabola.\\ Then\quad slope\quad of\quad tangent\quad is=2{ x }_{ 0 }\quad Hence\quad slope\quad \\ of\quad normal\quad is\quad \frac { -1 }{ 2{ x }_{ 0 } } .\quad So\quad equation\quad of\quad normal\\ is\quad (x-{ x }_{ 0 })=-2{ x }_{ 0 }(y-{ x }_{ 0 }^{ 2 }).\quad Solving\quad it\quad with\quad the\quad parabola\\ we\quad get\quad x={ x }_{ 0 },-\frac { 1 }{ 2{ x }_{ 0 } } -{ x }_{ 0 }\quad .\quad So\quad the\quad other\quad point\quad is\\ { P }_{ 2 }=(-\frac { 1 }{ 2{ x }_{ 0 } } -{ x }_{ 0 },{ (-\frac { 1 }{ 2{ x }_{ 0 } } -{ x }_{ 0 } })^{ 2 })\\ So\quad { P }_{ 1 }{ P }_{ 2 }=\sqrt { 4{ x }_{ 0 }^{ 2 }{ (1+\frac { 1 }{ 4{ x }_{ 0 }^{ 2 } } ) }^{ 3 } } .\quad For\quad maximising\quad { P }_{ 1 }{ P }_{ 2 }\\ we\quad will\quad maximise\quad the\quad part\quad under\quad the\quad radical.\\ f\left( { x }_{ 0 } \right) =4{ x }_{ 0 }^{ 2 }{ (1+\frac { 1 }{ 4{ x }_{ 0 }^{ 2 } } ) }^{ 3 }.\quad Equating\quad it's\quad derivative\quad to\quad 0\\ we\quad get\quad { x }_{ 0 }=\pm \frac { 1 }{ \sqrt { 2 } } .Put\quad the\quad value\quad and\quad we\quad get\quad \\ { P }_{ 1 }{ P }_{ 2 }=\frac { 3\sqrt { 3 } }{ 2 } .\\ \\

Since Length of chord is independent of reference frame So I Just Rotate This Parabola 90 degree in clockwise direction So it's equation becomes y 2 = x y^2=x Now I used Standard Formulas To get Result Easily !

Deepanshu Gupta - 6 years, 4 months ago

Log in to reply

What standard formulas did you use?

Joe Mansley - 1 year, 11 months ago

I agree with the coordinate of P 2 P_2 , but where do you get P 1 P 2 P_1P_2 ??? The distance squared between two points (a,b) and (c,d) is ( a c ) 2 + ( b d ) 2 (a-c)^2+(b-d)^2 With this, I get 4 x 0 2 + 3 + 3 4 x 0 2 + 1 16 x 0 4 4x_0^2+3+\frac{3}{4x_0^2}+\frac{1}{16x_0^4} , which minimum point is at ( 2 ) 2 \frac{\sqrt(2)}{2} , giving 27/4

Patrick Bourg - 6 years, 4 months ago

I think you need to change the words to " minimizing "

Bob Kadylo - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...