Can you notice a pattern?

Algebra Level 2

The Sum To Infinity of 1 7 + 2 7 2 + 1 7 3 + 2 7 4 . . . \displaystyle \cfrac { 1 }{ 7 } +\cfrac { 2 }{ { 7 }^{ 2 } } +\cfrac { 1 }{ { 7 }^{ 3 } } +\cfrac { 2 }{ { 7 }^{ 4 } } ... is

1 24 \displaystyle \cfrac { 1 }{ 24 } none of these 1 26 \displaystyle \cfrac { 1 }{ 26 } 1 5 \displaystyle \cfrac { 1 }{ 5 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Soumo Mukherjee
Dec 19, 2014

Clearly the question involves concept of G.P. And so the solution will contain formula for summation of a G.P.I am not mentioning the formula here and directly using it in my solution.

Note that the series contains infinite terms!

Rearranging the terms we get

s 1 = 1 7 + 1 7 3 + . . . = 1 / 7 1 ( 1 / 7 2 ) = 7 48 s 2 = 2 7 2 + 21 7 4 + . . . = 2 / 7 2 1 ( 1 / 7 2 ) = 2 48 s = s 1 + s 2 = 7 48 + 2 48 = 3 16 { s }_{ 1 }=\cfrac { 1 }{ 7 } +\cfrac { 1 }{ { 7 }^{ 3 } } +...=\cfrac { { 1 }/{ 7 } }{ 1-\left( { 1 }/{ { 7 }^{ 2 } } \right) } =\cfrac { 7 }{ 48 } \\ { s }_{ 2 }=\cfrac { 2 }{ { 7 }^{ 2 } } +\cfrac { 21 }{ { 7 }^{ 4 } } +...=\cfrac { { 2 }/{ { 7 }^{ 2 } } }{ 1-\left( { 1 }/{ { 7 }^{ 2 } } \right) } =\cfrac { 2 }{ 48 } \\ s={ s }_{ 1 }+{ s }_{ 2 }=\cfrac { 7 }{ 48 } +\cfrac { 2 }{ 48 } =\cfrac { 3 }{ 16 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...