x n − y n = ( x − y ) ( x n − 1 + x n − 2 y + x n − 3 y 2 + ⋯ + y n − 1 )
Is the above true for all integers n ≥ 2 ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Samuel Nascimento , no need to mention x , y ∈ R , because the equation is also true for complex values of x and y . You can start LaTex code by using \ ( ... \ ) or \ [ ... \ ] . For example: \ ( x, y \in \mathbb R \ ) x , y ∈ R and \ ( a^\frac 12, \sqrt[3]{x^2+y^2}, \frac \pi 2, \dfrac {\sqrt 3}2, \tan x, \sin x, \cos x, \ln x, \int 0^\frac \pi 2, \sum {k=1}^\infty, \displaystyle \frac \pi 2, \int 0^\frac \pi 2, \sum {k=1}^\infty, \ ) a 2 1 , 3 x 2 + y 2 , 2 π , 2 3 , tan x , sin x , cos x , ln x , ∫ 0 2 π , ∑ k = 1 ∞ , 2 π , ∫ 0 2 π , k = 1 ∑ ∞ .
The title need to be edited. There is two is it true #3
Problem Loading...
Note Loading...
Set Loading...
RHS = ( x − y ) ( x n − 1 + x n − 2 y + x n − 3 y 2 + ⋯ + y n − 1 ) = x ( x n − 1 + x n − 2 y + x n − 3 y 2 + ⋯ + y n − 1 ) − y ( x n − 1 + x n − 2 y + x n − 3 y 2 + ⋯ + y n − 1 ) = ( x n + x n − 1 y + x n − 2 y 2 + ⋯ + x y n − 1 ) − ( x n − 1 y + x n − 2 y 2 + ⋯ + x y n − 1 + y n ) = x n − y n = LHS