Is it true that ...? #5

Algebra Level 2

x n y n = ( x y ) ( x n 1 + x n 2 y + x n 3 y 2 + + y n 1 ) x^n-y^n = (x-y)\left(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \cdots + y^{n-1}\right)

Is the above true for all integers n 2 n \ge 2 ?

Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 21, 2019

RHS = ( x y ) ( x n 1 + x n 2 y + x n 3 y 2 + + y n 1 ) = x ( x n 1 + x n 2 y + x n 3 y 2 + + y n 1 ) y ( x n 1 + x n 2 y + x n 3 y 2 + + y n 1 ) = ( x n + x n 1 y + x n 2 y 2 + + x y n 1 ) ( x n 1 y + x n 2 y 2 + + x y n 1 + y n ) = x n y n = LHS \begin{aligned} \text{RHS} & = (x-y)\left(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \cdots + y^{n-1}\right) \\ & = x\left(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \cdots + y^{n-1}\right) - y\left(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \cdots + y^{n-1}\right) \\ & = \left(x^n + {\color{#D61F06} x^{n-1}y + x^{n-2}y^2 + \cdots + xy^{n-1}} \right) - \left({\color{#D61F06} x^{n-1}y + x^{n-2}y^2 + \cdots + xy^{n-1}} + y^n \right) \\ & = x^n - y^n = \text{LHS} \end{aligned}

@Samuel Nascimento , no need to mention x , y R x, y \in \mathbb R , because the equation is also true for complex values of x x and y y . You can start LaTex code by using \ ( \backslash( ... \ ) \backslash) or \ [ \backslash[ ... \ ] \backslash] . For example: \ ( \backslash( x, y \in \mathbb R \ ) \backslash) x , y R x, y \in \mathbb R and \ ( \backslash( a^\frac 12, \sqrt[3]{x^2+y^2}, \frac \pi 2, \dfrac {\sqrt 3}2, \tan x, \sin x, \cos x, \ln x, \int 0^\frac \pi 2, \sum {k=1}^\infty, \displaystyle \frac \pi 2, \int 0^\frac \pi 2, \sum {k=1}^\infty, \ ) \backslash) a 1 2 , x 2 + y 2 3 , π 2 , 3 2 , tan x , sin x , cos x , ln x , 0 π 2 , k = 1 , π 2 , 0 π 2 , k = 1 a^\frac 12, \sqrt[3]{x^2+y^2}, \frac \pi 2, \dfrac {\sqrt 3}2, \tan x, \sin x, \cos x, \ln x, \int_0^\frac \pi 2, \sum_{k=1}^\infty, \displaystyle \frac \pi 2, \int_0^\frac \pi 2, \sum_{k=1}^\infty .

Chew-Seong Cheong - 1 year, 10 months ago
Hana Wehbi
Jul 21, 2019

The title need to be edited. There is two is it true #3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...