Can you solve it?

Algebra Level 4

x 1 ! + x 2 ! + x 3 ! + + x 10 ! = 1001 \large \left \lfloor \dfrac x{1!} \right \rfloor + \left \lfloor \dfrac x{2!} \right \rfloor + \left \lfloor \dfrac x{3!} \right \rfloor +\cdots + \left \lfloor \dfrac x{10!} \right \rfloor =1001

Find the integer value of x x satisfying the equation above.

Notations :

  • \lfloor \cdot \rfloor denotes the floor function .

  • ! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 584.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 14, 2016

Let f ( x ) = n = 1 10 x n ! \displaystyle f(x) = \sum_{n=1}^{10} \left \lfloor \dfrac x{n!} \right \rfloor . We note that n = 1 10 1 n ! 1.7 \displaystyle \sum_{n=1}^{10} \frac{1}{n!} \approx 1.7 , x 1001 1.7 588 x \implies \approx \dfrac{1001}{1.7} \approx 588 . Since 588 < 6 ! < 7 ! . . . < 10 ! 588 < 6! < 7!...<10! , for f ( x ) = 1001 f(x) = 1001 in effect f ( x ) = n = 1 5 x n ! \displaystyle f(x) = \sum_{n=1}^{\color{#D61F06}{5}} \left \lfloor \dfrac x{n!} \right \rfloor . So, we have:

f ( 588 ) = 588 1 ! + 588 2 ! + 588 3 ! + 588 4 ! + 588 5 ! = 588 1 + 588 2 + 588 6 + 588 24 + 588 120 = 588 + 294 + 98 + 24 + 4 = 1008 \begin{aligned} f(588) & = \left \lfloor \dfrac {588}{1!} \right \rfloor + \left \lfloor \dfrac {588}{2!} \right \rfloor + \left \lfloor \dfrac {588}{3!} \right \rfloor + \left \lfloor \dfrac {588}{4!} \right \rfloor + \left \lfloor \dfrac {588}{5!} \right \rfloor \\ & = \left \lfloor \dfrac {588}{1} \right \rfloor + \left \lfloor \dfrac {588}{2} \right \rfloor + \left \lfloor \dfrac {588}{6} \right \rfloor + \left \lfloor \dfrac {588}{24} \right \rfloor + \left \lfloor \dfrac {588}{120} \right \rfloor \\ & = 588 + 294 + 98 + 24 + 4 \\ & = 1008 \end{aligned}

We note that for every increment of x x ,

  • Δ x = 1 Δ f ( x ) = 1 \Delta x = 1 \implies \Delta f(x) = 1
  • Δ x = 2 Δ f ( x ) = 3 \Delta x = 2 \implies \Delta f(x) = 3
  • Δ x = 6 Δ f ( x ) = 10 \Delta x = 6 \implies \Delta f(x) = 10
  • Since 6 588 6|588 or 588 588 is a multiple of 6 6 f ( 588 6 ) = 1008 10 \implies f(588-6) = 1008 - 10 or f ( 582 ) = 998 f(582) = 998
  • For f ( 582 + Δ x ) = 988 + 3 Δ f ( x ) = 3 Δ x = 2 f(582+\Delta x) = 988+3\implies \Delta f(x) = 3 \implies \Delta x = 2
  • Therefore x = 582 + 2 = 584 x = 582+2 = \boxed{584}

I would like to be like you in mathematics. Thank you for your impressive solution.

حافظ القران الكريم - 5 years, 1 month ago

Log in to reply

You can be better just do more problems. Is your name Al Karim?

Chew-Seong Cheong - 5 years, 1 month ago

can you put a level for this question ?

حافظ القران الكريم - 5 years, 1 month ago

Log in to reply

OK, I will put Level 4. It will adjust itself when more people solving it.

Chew-Seong Cheong - 5 years, 1 month ago
Aakash Khandelwal
May 14, 2016

It is not hard to see that

x < 6 ! x<6! .

Therefore all terms after [ x / 5 ! ] [x/5!] cancel out to be 0. Since all after that have integral part 0.

Now we see that x ( 500 , 600 ) x \in(500,600) .

Thus [ x / 5 ! ] [x/5!] = 4.

Now with remaining

[ x / 1 ! ] + [ x / 2 ! ] + [ x / 3 ! ] + [ x / 4 ! ] = 997 [x/1!] + [x/2!]+ [x/3!]+ [x/4!]=997 .

Now further checking gives that

x ( 576 , 600 ) x \in(576,600) .

Now we check for 582( can you guess the logic?)

We get x ( 582 , 600 ) x \in( 582,600) .

We find \( [x/24] = 24 , [x/6]=97).

Thus \( [x/1!] + [x/2!]= 876 \).

Now we check for 584 ( using the same logic) and we get our answer.

William Isoroku
May 16, 2016

By simple trial and error; x = 5 ! + n x=5!+n such that 5 ! < 5 ! + n < 6 ! 5!<5!+n<6!

Substituting this into the original equation becomes:

( 5 ! + n ) + ( 60 + n 2 ! ) + ( 20 + n 3 ! ) + ( 5 + n 4 ! ) + ( 1 + n 5 ! ) = 1001 (5!+n)+(60+\left\lfloor \frac { n }{ 2! } \right\rfloor )+(20+\left\lfloor \frac { n }{ 3! } \right\rfloor )+(5+\left\lfloor \frac { n }{ 4! } \right\rfloor )+(1+\left\lfloor \frac { n }{ 5! } \right\rfloor )=1001

Which becomes:

n + n 2 ! + n 3 ! + n 4 ! + n 5 ! = 795 n+\left\lfloor \frac { n }{ 2! } \right\rfloor +\left\lfloor \frac { n }{ 3! } \right\rfloor +\left\lfloor \frac { n }{ 4! } \right\rfloor +\left\lfloor \frac { n }{ 5! } \right\rfloor =795

And we can just play around with this equation to get the answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...