If the general solution of the differential equation,
[ y + x x y ( x + y ) ] d x + [ y x y ( x + y ) − x ] d y = 0
is if the form ,
t x r + y s + u tan − 1 y x + C = 0
where C is a constant , t , u = 1
and r , s , t , u > 0 then find the value of r+s+t+u.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
or you can differentiate the equation it is comparably easy
Problem Loading...
Note Loading...
Set Loading...
The given equation can be expanded as, ( y d x − x d y ) + x y ( x + y ) [ x d x + y d y ] = 0
on dividing the equation by y 2
y 2 y d x − x d y + y x y y ( x + y ) [ x d x + y d y ] = 0
we can observe that the first term is actually , d ( y x )
⇒ d ( y x ) + y x ( y x + 1 ) [ x d x + y d y ] = 0
⇒ d ( y x ) + y x ( ( y x ) 2 + 1 ) [ x d x + y d y ] = 0
⇒ d ( y x ) = − y x ( ( y x ) 2 + 1 ) [ x d x + y d y ]
⇒ ∫ y x ( ( y x ) 2 + 1 ) d ( y x ) = − { ∫ x d x + ∫ y d y }
on integrating both sides,
⇒ 2 tan − 1 y x + C = − { 2 x 2 + y 2 }
⇒ 2 x 2 + y 2 + 2 tan − 1 y x + C = 0
hence r+s+t+u = 8
Hope you guys understood it :)
If you got an easier solution , don't hesitate to put it up!